Variational Approach to Enhanced Sampling and Free Energy Calculations

Omar Valsson and Michele Parrinello
Phys. Rev. Lett. 113, 090601 – Published 27 August 2014
PDFHTMLExport Citation

Abstract

The ability of widely used sampling methods, such as molecular dynamics or Monte Carlo simulations, to explore complex free energy landscapes is severely hampered by the presence of kinetic bottlenecks. A large number of solutions have been proposed to alleviate this problem. Many are based on the introduction of a bias potential which is a function of a small number of collective variables. However constructing such a bias is not simple. Here we introduce a functional of the bias potential and an associated variational principle. The bias that minimizes the functional relates in a simple way to the free energy surface. This variational principle can be turned into a practical, efficient, and flexible sampling method. A number of numerical examples are presented which include the determination of a three-dimensional free energy surface. We argue that, beside being numerically advantageous, our variational approach provides a convenient and novel standpoint for looking at the sampling problem.

  • Figure
  • Figure
  • Received 1 July 2014

DOI:https://doi.org/10.1103/PhysRevLett.113.090601

© 2014 American Physical Society

Authors & Affiliations

Omar Valsson* and Michele Parrinello

  • Department of Chemistry and Applied Biosciences, ETH Zurich and Facoltà di Informatica, Instituto di Scienze Computationali, Università della Svizzera italiana, Via Giuseppe Buffi 13, CH-6900 Lugano, Switzerland

  • *omar.valsson@phys.chem.ethz.ch
  • parrinello@phys.chem.ethz.ch

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 113, Iss. 9 — 29 August 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×