Quantitative Determination of Contributions to the Thermoelectric Power Factor in Si Nanostructures

Hyuk Ju Ryu, Z. Aksamija, D. M. Paskiewicz, S. A. Scott, M. G. Lagally, I. Knezevic, and M. A. Eriksson
Phys. Rev. Lett. 105, 256601 – Published 13 December 2010

Abstract

We report thermoelectric measurements on a silicon nanoribbon in which an integrated gate provides strong carrier confinement and enables tunability of the carrier density over a wide range. We find a significantly enhanced thermoelectric power factor that can be understood by considering its behavior as a function of carrier density. We identify the underlying mechanisms for the power factor in the nanoribbon, which include quantum confinement, low scattering due to the absence of dopants, and, at low temperatures, a significant phonon-drag contribution. The measurements set a target for what may be achievable in ultrathin nanowires.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 16 March 2010

DOI:https://doi.org/10.1103/PhysRevLett.105.256601

© 2010 The American Physical Society

Authors & Affiliations

Hyuk Ju Ryu, Z. Aksamija, D. M. Paskiewicz, S. A. Scott, M. G. Lagally, I. Knezevic, and M. A. Eriksson

  • University of Wisconsin-Madison, Madison, Wisconsin 53706, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 105, Iss. 25 — 17 December 2010

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×