Uniform semiclassical wave function for coherent two-dimensional electron flow

Jiří Vaníček and Eric J. Heller
Phys. Rev. E 67, 016211 – Published 24 January 2003
PDFExport Citation

Abstract

We find a uniform semiclassical (SC) wave function describing coherent branched flow through a two-dimensional electron gas (2DEG), a phenomenon recently discovered by direct imaging of the current using scanned probed microscopy [M.A. Topinka, B.J. LeRoy, S.E.J. Shaw, E.J. Heller, R.M. Westervelt, K.D. Maranowski, and A.C. Gossard, Science 289, 2323 (2000)]. The formation of branches has been explained by classical arguments [M.A. Topinka, B.J. LeRoy, R.M. Westervelt, S.E.J. Shaw, R. Fleischmann, E.J. Heller, K.D. Maranowski, and A.C. Gossard, Nature (London) 410, 183 (2001)], but the SC simulations necessary to account for the coherence are made difficult by the proliferation of catastrophes in the phase space. In this paper, expansion in terms of “replacement manifolds” is used to find a uniform SC wave function for a cusp singularity. The method is then generalized and applied to calculate uniform wave functions for a quantum-map model of coherent flow through a 2DEG. Finally, the quantum-map approximation is dropped and the method is shown to work for a continuous-time model as well.

  • Received 30 August 2002

DOI:https://doi.org/10.1103/PhysRevE.67.016211

©2003 American Physical Society

Authors & Affiliations

Jiří Vaníček1 and Eric J. Heller1,2

  • 1Department of Physics, Harvard University, Cambridge, Massachusetts 02138
  • 2Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138

References (Subscription Required)

Click to Expand
Issue

Vol. 67, Iss. 1 — January 2003

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×