Effect of nuclear response functions in dark matter direct detection

Moira I. Gresham and Kathryn M. Zurek
Phys. Rev. D 89, 123521 – Published 25 June 2014

Abstract

We examine the effect of nuclear response functions, as laid out by Fitzpatrick et al. [J. Cosmol. Astropart. Phys. 02 (2013) 004], on dark matter (DM) direct detection in the context of well-motivated UV completions, including electric and magnetic dipoles, anapole, spin-orbit, and pseudoscalar-mediated DM. Together, these encompass five of the six nuclear responses extracted from the nonrelativistic effective theory of Fitzpatrick et al. [J. Cosmol. Astropart. Phys. 02 (2013) 004] (with the sixth difficult to UV complete), with two of the six combinations corresponding to standard spin-independent and spin-dependent responses. For constraints from existing direct detection experiments, we find that only the COUPP constraint, due to its heavy iodine target with large angular momentum and an unpaired spin, and its large energy range sensitivity, is substantially modified by the new responses compared to what would be inferred using the standard form factors to model the energy dependence of the response. For heavy targets such as xenon and germanium, the behavior of the new nuclear responses as recoil energy increases can be substantially different from that of the standard responses, but this has almost no impact on the constraints derived from experiments such as LUX, XENON100, and CDMS since the maximum nuclear recoil energy detected in these experiments is relatively low. We simulate mock data for 80 and 250 GeV DM candidates utilizing the new nuclear responses to highlight how they might affect a putative signal, and find the new responses are most important for highly momentum-suppressed interactions such as the magnetic dipole or pseudoscalar-mediated interaction when the target is relatively heavy (such as xenon and iodine).

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
5 More
  • Received 17 February 2014

DOI:https://doi.org/10.1103/PhysRevD.89.123521

© 2014 American Physical Society

Authors & Affiliations

Moira I. Gresham1 and Kathryn M. Zurek2

  • 1Whitman College, Walla Walla, Washington 99362, USA
  • 2Michigan Center for Theoretical Physics, University of Michigan, Ann Arbor, Michigan 48109, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 89, Iss. 12 — 15 June 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×