Charge, junctions, and the scaling of domain wall networks

Richard A. Battye and Jonathan A. Pearson
Phys. Rev. D 82, 125001 – Published 1 December 2010

Abstract

It has been shown that superconducting domain walls in a model with U(1)×Z2 symmetry can form long-lived loops called kinky vortons from random initial conditions in the broken field and a uniform charged background in (2+1) dimensions. In this paper we investigate a similar model with a hypercubic symmetry coupled to an unbroken U(1) in which the domain walls can form junctions and hence a lattice. We call this model the charge-coupled cubic-anisotropy (CCCA) model. First, we present a detailed parametric study of the U(1)×Z2 model; features which we vary include the nature of the initial conditions and the coupling constants. This allows us to identify interesting parameters to vary in the more complicated, and hence more computationally intensive, CCCA models. In particular we find that the coefficient of the interaction term can be used to engineer three separate regimes: phase mixing, condensation, and phase separation with the condensation regime corresponding to a single value of the coupling constant defined by the determinant of the quartic interaction terms being zero. We then identify the condensation regime in the CCCA model and show that, in this regime, the number of domain walls does not scale in the standard way if the initial conditions have a sufficiently high background charge. Instead of forming loops of domain wall, we find that, within the constraints of dynamic range, the network appears to be moving toward a glasslike configuration. We find that the results are independent of the dimension of the hypercube.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
7 More
  • Received 18 October 2010

DOI:https://doi.org/10.1103/PhysRevD.82.125001

© 2010 The American Physical Society

Authors & Affiliations

Richard A. Battye* and Jonathan A. Pearson

  • Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom

  • *richard.battye@manchester.ac.uk
  • jp@jb.man.ac.uk

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 82, Iss. 12 — 15 December 2010

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×