• Open Access

Spacetime and universal soft modes: Black holes and beyond

Yasunori Nomura
Phys. Rev. D 101, 066024 – Published 25 March 2020

Abstract

Recently, a coherent picture of the quantum mechanics of an evaporating black hole has been presented which reconciles unitarity with the predictions of the equivalence principle. The thermal nature of a black hole as viewed in a distant reference frame arises from entanglement between the hard and soft modes generated by the chaotic dynamics at the string scale. In this paper, we elaborate on this picture, particularly emphasizing the importance of the chaotic nature of the string (UV) dynamics across all low-energy species in generating large (IR) spacetime behind the horizon. Implications of this UV/IR relation include O(1) breaking of global symmetries at the string scale and a self-repair mechanism of black holes restoring the smoothness of their horizons. We also generalize the framework to other systems, including Rindler, de Sitter, and asymptotically flat spacetimes, and find a consistent picture in each case. Finally, we discuss the origin of the particular construction adopted in describing the black hole interior as well as the outside of a de Sitter horizon. We argue that the construction is selected by the quantum-to-classical transition, in particular, the applicability of the Born rule in a quantum mechanical world.

  • Figure
  • Figure
  • Received 25 August 2019
  • Accepted 27 February 2020

DOI:https://doi.org/10.1103/PhysRevD.101.066024

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & AstrophysicsQuantum Information, Science & TechnologyParticles & Fields

Authors & Affiliations

Yasunori Nomura

  • Berkeley Center for Theoretical Physics, Department of Physics, University of California, Berkeley, California 94720, USA; Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; and Kavli Institute for the Physics and Mathematics of the Universe (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 101, Iss. 6 — 15 March 2020

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×