• Open Access

Phase of confined electroweak force in the early Universe

Joshua Berger, Andrew J. Long, and Jessica Turner
Phys. Rev. D 100, 055005 – Published 6 September 2019

Abstract

We consider a modified cosmological history in which the presence of beyond-the-Standard-Model physics causes the weak gauge sector, SU(2)L, to confine before it is Higgsed. Under the assumption of chiral symmetry breaking, quark and lepton weak doublets form condensates that break the global symmetries of the Standard Model, including baryon and lepton number, down to a U(1) subgroup under which only the weak singlet fermions and Higgs boson transform. The weakly coupled gauge group SU(3)c×U(1)Y is also broken to an SU(2)c×U(1)Q gauge group. The light states include (pseudo-)Goldstone bosons of the global symmetry breaking, mostly elementary fermions primarily composed of the weak singlet quarks and leptons, and the gauge bosons of the weakly coupled gauge group. We discuss possible signatures from early Universe cosmology including gravitational wave radiation, topological defects, and baryogenesis.

  • Figure
  • Received 18 June 2019

DOI:https://doi.org/10.1103/PhysRevD.100.055005

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Particles & Fields

Authors & Affiliations

Joshua Berger1, Andrew J. Long2,3, and Jessica Turner4

  • 1Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
  • 2Leinweber Center for Theoretical Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
  • 3Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
  • 4Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510, USA

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 100, Iss. 5 — 1 September 2019

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×