Symmetry-protected topological orders for interacting fermions: Fermionic topological nonlinear σ models and a special group supercohomology theory

Zheng-Cheng Gu and Xiao-Gang Wen
Phys. Rev. B 90, 115141 – Published 23 September 2014

Abstract

Symmetry-protected topological (SPT) phases are gapped short-range-entangled quantum phases with a symmetry G, which can all be smoothly connected to the trivial product states if we break the symmetry. It has been shown that a large class of interacting bosonic SPT phases can be systematically described by group cohomology theory. In this paper, we introduce a (special) group supercohomology theory which is a generalization of the standard group cohomology theory. We show that a large class of short-range interacting fermionic SPT phases can be described by the group supercohomology theory. Using the data of supercocycles, we can obtain the ideal ground state wave function for the corresponding fermionic SPT phase. We can also obtain the bulk Hamiltonian that realizes the SPT phase, as well as the anomalous (i.e., non-onsite) symmetry for the boundary effective Hamiltonian. The anomalous symmetry on the boundary implies that the symmetric boundary must be gapless for (1+1)-dimensional [(1+1)D] boundary, and must be gapless or topologically ordered beyond (1+1)D. As an application of this general result, we construct a new SPT phase in three dimensions, for interacting fermionic superconductors with coplanar spin order (which have T2=1 time-reversal Z2T and fermion-number-parity Z2f symmetries described by a full symmetry group Z2T×Z2f). Such a fermionic SPT state can neither be realized by free fermions nor by interacting bosons (formed by fermion pairs), and thus are not included in the K-theory classification for free fermions or group cohomology description for interacting bosons. We also construct three interacting fermionic SPT phases in two dimensions (2D) with a full symmetry group Z2×Z2f. Those 2D fermionic SPT phases all have central-charge c=1 gapless edge excitations, if the symmetry is not broken.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
15 More
  • Received 15 June 2013
  • Revised 13 August 2014

DOI:https://doi.org/10.1103/PhysRevB.90.115141

©2014 American Physical Society

Authors & Affiliations

Zheng-Cheng Gu1 and Xiao-Gang Wen1,2

  • 1Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada N2L 2Y5
  • 2Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 90, Iss. 11 — 15 September 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×