Majorana end states in multiband microstructures with Rashba spin-orbit coupling

Andrew C. Potter and Patrick A. Lee
Phys. Rev. B 83, 094525 – Published 17 March 2011

Abstract

A recent work [Potter and Lee, Phys. Rev. Lett. 105, 227003 (2010)] demonstrated, for an ideal spinless p+ip superconductor, that Majorana end states can be realized outside the strict one-dimensional limit, so long as (1) the sample width does not greatly exceed the superconducting coherence length and (2) an odd number of transverse subbands are occupied. Here we extend this analysis to the case of an effective p+ip superconductor engineered from a Rashba spin-orbit-coupled surface with induced magnetization and superconductivity, and find a number of additional features. Specifically, we find that finite-size quantization allows Majorana end states even when the chemical potential is outside of the induced Zeeman gap where the bulk material would not be topological. This is relevant to proposals utilizing semiconducting quantum wires; however, we also find that the bulk energy gap is substantially reduced if the induced magnetization is too large. We next consider a slightly different geometry, and show that Majorana end states can be created at the ends of ferromagnetic domains. Finally, we consider the case of meandering edges and find, surprisingly, that the existence of well-defined transverse subbands is not necessary for the formation of robust Majorana end states.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 29 November 2010

DOI:https://doi.org/10.1103/PhysRevB.83.094525

©2011 American Physical Society

Authors & Affiliations

Andrew C. Potter and Patrick A. Lee

  • Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 83, Iss. 9 — 1 March 2011

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×