Morphology of multilayer Ag/Ag(100) films versus deposition temperature: STM analysis and atomistic lattice-gas modeling

K. J. Caspersen, C. R. Stoldt, A. R. Layson, M. C. Bartelt, P. A. Thiel, and J. W. Evans
Phys. Rev. B 63, 085401 – Published 29 January 2001
PDFExport Citation

Abstract

Scanning tunneling microscopy is used to analyze the nanoscale morphology of 25 ML films of Ag deposited on Ag(100) at temperatures (T) between 55 and 300 K. A transition from self-affine growth to “mound formation” occurs as T increases above about 140 K. The roughness decreases with increasing T up until 140 K in the self-affine growth regime, and then increases until about 210 K before decreasing again in the mounding regime. We analyze mounding behavior via a lattice-gas model incorporating: downward funneling of depositing atoms from step edges to lower fourfold hollow adsorption sites; terrace diffusion of adatoms with a barrier of 0.40 eV leading to irreversible island formation in each layer; efficient transport of adatoms along island edges to kink sites; and downward thermal transport of adatoms inhibited by a step-edge barrier of 0.06–0.07 eV along close-packed step edges (but with no barrier along kinked or open steps). This model reasonably recovers the T-dependence of not just the roughness, but also of the mound slopes and lateral dimensions above 190 K. To accurately describe lateral dimensions, an appropriate treatment of the intralayer merging of growing islands is shown to be critical. To describe behavior below 190 K, one must account for inhibited rounding of kinks by adatoms at island edges, as this controls island shapes, and thus the extent of open steps and of easy downward transport. Elsewhere, we describe the low-T regime of self-affine growth (with no terrace diffusion) accounting for a breakdown of the simple downward funneling picture.

  • Received 22 September 2000

DOI:https://doi.org/10.1103/PhysRevB.63.085401

©2001 American Physical Society

Authors & Affiliations

K. J. Caspersen1, C. R. Stoldt1,*, A. R. Layson1, M. C. Bartelt2, P. A. Thiel1, and J. W. Evans3

  • 1Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011
  • 2Department of Chemistry and Materials Science, Lawrence Livermore National Laboratory, Livermore, California 94550
  • 3Department of Mathematics and Ames Laboratory, Iowa State University, Ames, Iowa 50011

  • *Current address: Department of Chemical Engineering, University of California, Berkeley, CA 94720.

References (Subscription Required)

Click to Expand
Issue

Vol. 63, Iss. 8 — 15 February 2001

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×