Corrections to density-functional theory band gaps

Kurt A. Johnson and N. W. Ashcroft
Phys. Rev. B 58, 15548 – Published 15 December 1998
PDFExport Citation

Abstract

An effective exchange-correlation potential for conduction-band states differing from that of the valence-band states is found within an extension of an extreme tight-binding model. Starting from Hedin’s GW formulation of the self-energy, simplifications are made by including only near-neighbor interactions, and by an expansion of band energies carried out around their Brillouin-zone averages. The potential difference is applied as a perturbation to the conduction-band states from a Kohn-Sham calculation with the local-density approximation, and a scissors-type band-gap correction is then obtained in a simple and efficient manner. Although the model is valid for strictly insulating systems, it is found that the correction (when adjusted to reproduce the known silicon and carbon band gaps as in a Slater Xα method) leads to semiconductor band gaps within 0.1–0.3 eV of their experimental values. Both zinc-blende and wurtzite semiconductors of the IV, III-V, and II-VI groups are studied here.

  • Received 12 January 1998

DOI:https://doi.org/10.1103/PhysRevB.58.15548

©1998 American Physical Society

Authors & Affiliations

Kurt A. Johnson and N. W. Ashcroft

  • Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501

References (Subscription Required)

Click to Expand
Issue

Vol. 58, Iss. 23 — 15 December 1998

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×