Mechanism of spin and charge separation in one-dimensional quantum antiferromagnets

Christopher Mudry and Eduardo Fradkin
Phys. Rev. B 50, 11409 – Published 15 October 1994
PDFExport Citation

Abstract

We reconsider the problem of separation of spin and charge in one-dimensional quantum antiferromagnets. We show that spin and charge separation in one-dimensional strongly correlated systems cannot be described by the slave-boson or fermion representation within any perturbative treatment of the interactions between the slave holons and slave spinons. The constraint of single occupancy must be implemented exactly. As a result the slave fermions and bosons are not part of the physical spectrum. Instead, the excitations that carry the separate spin and charge quantum numbers are solitons. To prove this result, it is sufficient to study the pure spinon sector in the slave-boson representation. We start with a short-range resonating-valence-bond state spin liquid mean-field theory for the frustrated antiferromagnetic spin-1/2 chain. We derive an effective theory for the fluctuations of the Affleck-Marston and Anderson order parameters. We show how to recover the phase diagram as a function of the frustration by treating the fluctuations nonperturbatively.

  • Received 27 April 1994

DOI:https://doi.org/10.1103/PhysRevB.50.11409

©1994 American Physical Society

Authors & Affiliations

Christopher Mudry and Eduardo Fradkin

  • Physics Department, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080

References (Subscription Required)

Click to Expand
Issue

Vol. 50, Iss. 16 — 15 October 1994

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×