Generalized Pauli conditions on the spectra of one-electron reduced density matrices of atoms and molecules

Romit Chakraborty and David A. Mazziotti
Phys. Rev. A 89, 042505 – Published 16 April 2014

Abstract

The Pauli exclusion principle requires the spectrum of the occupation numbers of the one-electron reduced density matrix (1-RDM) to be bounded by one and zero. However, for a 1-RDM from a wave function, there exist additional conditions on the spectrum of occupation numbers, known as pure N-representability conditions or generalized Pauli conditions. For atoms and molecules, we measure through a Euclidean-distance metric the proximity of the 1-RDM spectrum to the facets of the convex set (polytope) generated by the generalized Pauli conditions. For the ground state of any spin symmetry, as long as time-reversal symmetry is considered in the definition of the polytope, we find that the 1-RDM's spectrum is pinned to the boundary of the polytope. In contrast, for excited states, we find that the 1-RDM spectrum is not pinned. Proximity of the 1-RDM to the boundary of the polytope provides a measurement and classification of electron correlation and entanglement within the quantum system. For comparison, this distance to the boundary of the generalized Pauli conditions is also compared to the distance to the polytope of the traditional Pauli conditions, and the distance to the nearest 1-RDM spectrum from a Slater determinant. We explain the difference in pinning in the ground- and excited-state 1-RDMs through a connection to the N-representability conditions of the two-electron reduced density matrix.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 23 January 2014

DOI:https://doi.org/10.1103/PhysRevA.89.042505

©2014 American Physical Society

Authors & Affiliations

Romit Chakraborty and David A. Mazziotti*

  • Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA

  • *damazz@uchicago.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 89, Iss. 4 — April 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×