Theory of the forces exerted by Laguerre-Gaussian light beams on dielectrics

Rodney Loudon
Phys. Rev. A 68, 013806 – Published 7 July 2003
PDFExport Citation

Abstract

The classical theory of the electromagnetic field associated with paraxial Laguerre-Gaussian light is generalized to apply to propagation in a bulk dielectric, and the theory is quantized to obtain expressions for the electric and magnetic field operators. The forms of the Poynting vector and angular momentum density operators are derived and their expectation values for a single-photon wave packet are obtained. The Lorentz force operator in the dielectric is resolved into longitudinal, radial, and azimuthal components. The theory is extended to apply to an interface between two semi-infinite dielectric media, one of which is transparent with an incident single-photon pulse, and the other of which is weakly attenuating. For a pulse that is much shorter than the attenuation length, the theory can separately identify the surface and bulk contributions to the Lorentz force on the attenuating dielectric. Particular attention is given to the transfer of longitudinal and angular momentum to the dielectric from light incident from free space. The resulting expressions for the shift and rotation of a transparent dielectric slab are shown to agree with those obtained from Einstein box theories.

  • Received 17 March 2003

DOI:https://doi.org/10.1103/PhysRevA.68.013806

©2003 American Physical Society

Authors & Affiliations

Rodney Loudon

  • Department of Electronic Systems Engineering, University of Essex, Colchester CO4 3SQ, England

References (Subscription Required)

Click to Expand
Issue

Vol. 68, Iss. 1 — July 2003

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×