Motion and ionization equilibrium of hydrogen atoms in a superstrong magnetic field

Dong Lai and Edwin E. Salpeter
Phys. Rev. A 52, 2611 – Published 1 October 1995
PDFExport Citation

Abstract

We study the effects of finite proton mass on the energy levels of hydrogen atoms moving transverse to a superstrong magnetic field B with generalized pseudomomentum K. Field strengths of order B1012 G are typically found on the surfaces of neutron stars, but we also study the regime BBcrit=4.23×1013 G, where the Landau excitation energy of the proton is large. We adopt two different approaches to the two-body problem in strong magnetic fields and obtain an approximate but complete solution of the atomic energy as a function of B and K. We show that, for BBcrit, there is an orthogonal set of bound states that do not have any Landau excitation contribution in their energies. The states with very large K have small binding energies and small transverse velocities, but are nevertheless distinct from the fully ionized states. The final results for the excitation energies are given in the form of analytical fitting formulas. The generalized Saha equation for the ionization-recombination equilibrium of hydrogen gas in the presence of a superstrong magnetic field is then derived. Although the maximum transverse velocity of a bound atom decreases as B increases, the statistical weight due to transverse motion is actually increased by the strong magnetic field. For the astrophysically interesting case of relatively low density and temperature, we obtain analytic approximations for the partition functions. The highly excited bound states have a smaller statistical weight than the fully ionized component.

  • Received 15 May 1995

DOI:https://doi.org/10.1103/PhysRevA.52.2611

©1995 American Physical Society

Authors & Affiliations

Dong Lai

  • Theoretical Astrophysics, 130-33, California Institute of Technology, Pasadena, California 91125

Edwin E. Salpeter

  • Center for Radiophysics and Space Research, Cornell University, Ithaca, New York 14853

References (Subscription Required)

Click to Expand
Issue

Vol. 52, Iss. 4 — October 1995

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×