• Featured in Physics
  • Open Access

High-Precision Multiphoton Ionization of Accelerated Laser-Ablated Species

R. F. Garcia Ruiz, A. R. Vernon, C. L. Binnersley, B. K. Sahoo, M. Bissell, J. Billowes, T. E. Cocolios, W. Gins, R. P. de Groote, K. T. Flanagan, A. Koszorus, K. M. Lynch, G. Neyens, C. M. Ricketts, K. D. A. Wendt, S. G. Wilkins, and X. F. Yang
Phys. Rev. X 8, 041005 – Published 8 October 2018
Physics logo See Viewpoint: Resonant Ionization Spectroscopy Technique Becomes Tabletop Friendly

Abstract

We demonstrate that the pulsed-time structure and high-peak ion intensity provided by the laser-ablation process can be directly combined with the high resolution, high efficiency, and low background offered by collinear resonance ionization spectroscopy. This simple, versatile, and powerful method offers new and unique opportunities for high-precision studies of atomic and molecular structures, impacting fundamental and applied physics research. We show that even for ion beams possessing a relatively large energy spread, high-resolution hyperfine-structure measurements can be achieved by correcting the observed line shapes with the time-of-flight information of the resonantly ionized ions. This approach offers exceptional advantages for performing precision measurements on beams with large energy spreads and allows measurements of atomic parameters of previously inaccessible electronic states. The potential of this experimental method in multidisciplinary research is illustrated by performing, for the first time, hyperfine-structure measurements of selected states in the naturally occurring isotopes of indium, In113,115. Ab initio atomic-physics calculations have been performed to highlight the importance of our findings in the development of state-of-the-art atomic many-body methods, nuclear structure, and fundamental-physics studies.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 9 October 2017
  • Revised 7 August 2018

DOI:https://doi.org/10.1103/PhysRevX.8.041005

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Nuclear PhysicsAtomic, Molecular & OpticalParticles & FieldsAccelerators & BeamsInterdisciplinary PhysicsPlasma Physics

Viewpoint

Key Image

Resonant Ionization Spectroscopy Technique Becomes Tabletop Friendly

Published 8 October 2018

A modified version of a spectroscopic technique used at large-scale radioactive-ion-beam facilities could be used in tabletop experiments.

See more in Physics

Authors & Affiliations

R. F. Garcia Ruiz1,2,*, A. R. Vernon1, C. L. Binnersley1, B. K. Sahoo3, M. Bissell1, J. Billowes1, T. E. Cocolios4, W. Gins4, R. P. de Groote4,†, K. T. Flanagan1,5, A. Koszorus4, K. M. Lynch2, G. Neyens4,2, C. M. Ricketts1, K. D. A. Wendt6, S. G. Wilkins1, and X. F. Yang4,7

  • 1School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
  • 2EP Department, CERN, CH-1211 Geneva 23, Switzerland
  • 3Atomic and Molecular Physics Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380009, India and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
  • 4KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
  • 5Photon Science Institute Alan Turing Building, University of Manchester, Manchester M13 9PY, United Kingdom
  • 6Institut für Physik, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany
  • 7School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China

  • *ronald.fernando.garcia.ruiz@cern.ch
  • Present address: Department of Physics, University of Jyväskylä, Jyväskylä, Finland.

Popular Summary

The study of radioactive nuclei, interactions among electrons and nuclear particles, and new physics beyond the standard variety of fundamental particles and forces has led to the development of precise and efficient laser-based experimental techniques. However, far-reaching applications are often limited by the reliance on complex devices that are available only at large experimental facilities. Here, we present a simple yet powerful tabletop approach to highly sensitive and precise measurements of atomic and molecular structure.

Our approach combines distinct features provided by pulsed-laser ablation and collinear resonance ionization spectroscopy, a laser spectroscopy technique developed at CERN. We show that even for ion beams possessing a relatively large energy spread, high-resolution measurements of hyperfine structure can be achieved by correcting the observed line shapes with the time-of-flight information of resonantly ionized ions. This combination offers unique advantages for precisely measuring atomic parameters of previously inaccessible electronic states.

We illustrate the potential of this experimental method in multidisciplinary research by performing, for the first time, hyperfine-structure measurements of selected states in atomic indium. We compare our results with first-principles atomic physics calculations to highlight the importance of our findings in nuclear structure, atomic theory, and studies of fundamental symmetries.

Our approach should have further applications in atomic and molecular spectroscopy as well as in the study of laser-generated plasmas.

Key Image

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 8, Iss. 4 — October - December 2018

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review X

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×