• Open Access

Matrix formalism of synchrobetatron coupling

Xiaobiao Huang
Phys. Rev. ST Accel. Beams 10, 014002 – Published 4 January 2007

Abstract

In this paper we present a complete linear synchrobetatron coupling formalism by studying the transfer matrix which describes linear horizontal and longitudinal motions. With the technique established in the linear horizontal-vertical coupling study [D. Sagan and D. Rubin, Phys. Rev. ST Accel. Beams 2, 074001 (1999)], we found a transformation to block diagonalize the transfer matrix and decouple the betatron motion and the synchrotron motion. By separating the usual dispersion term from the horizontal coordinate first, we were able to obtain analytic expressions of the transformation under reasonable approximations. We also obtained the perturbations to the betatron tune and the Courant-Snyder functions. The closed-orbit changes due to finite energy gains at rf cavities and radiation energy losses were studied by the 5×5 extended transfer matrix with the fifth column describing kicks in the 4-dimension phase space.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 6 October 2006

DOI:https://doi.org/10.1103/PhysRevSTAB.10.014002

This article is available under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Authors & Affiliations

Xiaobiao Huang*

  • Stanford Linear Accelerator Center, Menlo Park, California 94025, USA

  • *Electronic address: xiahuang@slac.stanford.edu

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 10, Iss. 1 — January 2007

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Accelerators and Beams

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 3.0 License. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×