• Open Access

Automatic differentiable numerical renormalization group

Jonas B. Rigo and Andrew K. Mitchell
Phys. Rev. Research 4, 013227 – Published 25 March 2022

Abstract

Machine learning techniques have recently gained prominence in physics, yielding a host of new results and insights. One key concept is that of backpropagation, which computes the exact gradient of any output of a program with respect to any input. This is achieved efficiently within the differentiable programming paradigm, which utilizes automatic differentiation (AD) of each step of a computer program and the chain rule. A classic application is in training neural networks. Here, we apply this methodology instead to the numerical renormalization group (NRG), a powerful technique in computational quantum many-body physics. We demonstrate how derivatives of NRG outputs with respect to Hamiltonian parameters can be accurately and efficiently obtained. Physical properties can be calculated using this differentiable NRG scheme—for example, thermodynamic observables from derivatives of the free energy. Susceptibilities can be computed by adding source terms to the Hamiltonian, but still evaluated with AD at precisely zero field. As an outlook, we briefly discuss the derivatives of dynamical quantities and a possible route to the vertex.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 31 August 2021
  • Accepted 24 February 2022

DOI:https://doi.org/10.1103/PhysRevResearch.4.013227

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Jonas B. Rigo* and Andrew K. Mitchell

  • School of Physics, University College Dublin, Belfield, Dublin 4, Ireland and Centre for Quantum Engineering, Science, and Technology, University College Dublin, Belfield, Dublin 4, Ireland

  • *jonas.rigo@ucdconnect.ie
  • andrew.mitchell@ucd.ie

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 4, Iss. 1 — March - May 2022

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×