• Open Access

First Measurement of Inclusive Muon Neutrino Charged Current Differential Cross Sections on Argon at Eν0.8GeV with the MicroBooNE Detector

P. Abratenko et al. (MicroBooNE Collaboration)
Phys. Rev. Lett. 123, 131801 – Published 23 September 2019
PDFHTMLExport Citation

Abstract

We report the first measurement of the double-differential and total muon neutrino charged current inclusive cross sections on argon at a mean neutrino energy of 0.8 GeV. Data were collected using the MicroBooNE liquid argon time projection chamber located in the Fermilab Booster neutrino beam and correspond to 1.6×1020 protons on target of exposure. The measured differential cross sections are presented as a function of muon momentum, using multiple Coulomb scattering as a momentum measurement technique, and the muon angle with respect to the beam direction. We compare the measured cross sections to multiple neutrino event generators and find better agreement with those containing more complete treatment of quasielastic scattering processes at low Q2. The total flux integrated cross section is measured to be 0.693±0.010(stat)±0.165(syst)×1038cm2.

  • Figure
  • Figure
  • Received 8 June 2019
  • Revised 6 August 2019

DOI:https://doi.org/10.1103/PhysRevLett.123.131801

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

  1. Research Areas
  1. Physical Systems
Particles & FieldsNuclear PhysicsAtomic, Molecular & OpticalAccelerators & Beams

Authors & Affiliations

Click to Expand

Article Text

Click to Expand

Supplemental Material

Click to Expand

References

Click to Expand
Issue

Vol. 123, Iss. 13 — 27 September 2019

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×