Azimuthal Anisotropy in U+U and Au+Au Collisions at RHIC

L. Adamczyk et al. (STAR Collaboration)
Phys. Rev. Lett. 115, 222301 – Published 24 November 2015

Abstract

Collisions between prolate uranium nuclei are used to study how particle production and azimuthal anisotropies depend on initial geometry in heavy-ion collisions. We report the two- and four-particle cumulants, v2{2} and v2{4}, for charged hadrons from U+U collisions at sNN=193GeV and Au+Au collisions at sNN=200GeV. Nearly fully overlapping collisions are selected based on the energy deposited by spectators in zero degree calorimeters (ZDCs). Within this sample, the observed dependence of v2{2} on multiplicity demonstrates that ZDC information combined with multiplicity can preferentially select different overlap configurations in U+U collisions. We also show that v2 vs multiplicity can be better described by models, such as gluon saturation or quark participant models, that eliminate the dependence of the multiplicity on the number of binary nucleon-nucleon collisions.

  • Figure
  • Figure
  • Figure
  • Received 28 May 2015

DOI:https://doi.org/10.1103/PhysRevLett.115.222301

© 2015 American Physical Society

Authors & Affiliations

Click to Expand

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 115, Iss. 22 — 27 November 2015

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×