Variational superposed Gaussian approximation for time-dependent solutions of Langevin equations

Yoshihiko Hasegawa
Phys. Rev. E 91, 042912 – Published 21 April 2015

Abstract

We propose a variational superposed Gaussian approximation (VSGA) for dynamical solutions of Langevin equations subject to applied signals, determining time-dependent parameters of superposed Gaussian distributions by the variational principle. We apply the proposed VSGA to systems driven by a chaotic signal, where the conventional Fourier method cannot be adopted, and calculate the time evolution of probability density functions (PDFs) and moments. Both white and colored Gaussian noises terms are included to describe fluctuations. Our calculations show that time-dependent PDFs obtained by VSGA agree excellently with those obtained by Monte Carlo simulations. The correlation between the chaotic input signal and the mean response are also calculated as a function of the noise intensity, which confirms the occurrence of aperiodic stochastic resonance with both white and colored noises.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
5 More
  • Received 21 November 2014

DOI:https://doi.org/10.1103/PhysRevE.91.042912

©2015 American Physical Society

Authors & Affiliations

Yoshihiko Hasegawa*

  • Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan

  • *Corresponding author: yoshihiko.hasegawa@gmail.com

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 91, Iss. 4 — April 2015

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×