Quantification of causal couplings via dynamical effects: A unifying perspective

Dmitry A. Smirnov
Phys. Rev. E 90, 062921 – Published 29 December 2014

Abstract

Quantitative characterization of causal couplings from time series is crucial in studies of complex systems of different origin. Various statistical tools for that exist and new ones are still being developed with a tendency to creating a single, universal, model-free quantifier of coupling strength. However, a clear and generally applicable way of interpreting such universal characteristics is lacking. This work suggests a general conceptual framework for causal coupling quantification, which is based on state space models and extends the concepts of virtual interventions and dynamical causal effects. Namely, two basic kinds of interventions (state space and parametric) and effects (orbital or transient and stationary or limit) are introduced, giving four families of coupling characteristics. The framework provides a unifying view of apparently different well-established measures and allows us to introduce new characteristics, always with a definite “intervention-effect” interpretation. It is shown that diverse characteristics cannot be reduced to any single coupling strength quantifier and their interpretation is inevitably model based. The proposed set of dynamical causal effect measures quantifies different aspects of “how the coupling manifests itself in the dynamics,” reformulating the very question about the “causal coupling strength.”

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 2 May 2014

DOI:https://doi.org/10.1103/PhysRevE.90.062921

©2014 American Physical Society

Authors & Affiliations

Dmitry A. Smirnov*

  • Saratov Branch of V.A. Kotel'nikov Institute of RadioEngineering and Electronics of the Russian Academy of Sciences, 38 Zelyonaya St., Saratov 410019, Russia

  • *smirnovda@yandex.ru

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 90, Iss. 6 — December 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×