Dynamics of ternary mixtures with photosensitive chemical reactions: Creating three-dimensionally ordered blends

Olga Kuksenok, Rui D. M. Travasso, and Anna C. Balazs
Phys. Rev. E 74, 011502 – Published 11 July 2006

Abstract

Using computer simulations, we establish an approach for creating defect-free, periodically ordered polymeric materials. The system involves ABC ternary mixtures where the A and B components undergo a reversible photochemical reaction. In addition, all three components are mutually immiscible and undergo phase separation. Through the simulations, we model the effects of illuminating a three-dimensional (3D) sample with spatially and temporally dependent light irradiation. Experimentally, this situation can be achieved by utilizing both a uniform background light and a spatially localized, higher intensity light, and then rastering a higher-intensity light over the 3D sample. We first focus on the case where the higher-intensity light is held stationary and focused in a distinct region within the system. The C component is seen to displace the A and B within this region and replicate the pattern formed by the higher-intensity light. In effect, one can write a pattern of C onto the AB binary system by focusing the higher-intensity light in the desired arrangement. We isolate the conditions that are necessary for producing clearly written patterns of C (i.e., for obtaining sharp interfaces between the C and AB domains). We next consider the effect of rastering a higher-intensity light over this sample and find that this light “combs out” defects in the AB blend as it moves through the system. The resulting material displays a defect-free structure that encompasses both a periodic ordering of the A and B domains and a well-defined motif of C. In this manner, one can create hierarchically patterned materials that exhibit periodicity over two distinct length scales. The approach is fully reversible, noninvasive, and points to a novel means of patterning with homopolymers, which normally do not self-assemble into periodic structures.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
5 More
  • Received 31 January 2006

DOI:https://doi.org/10.1103/PhysRevE.74.011502

©2006 American Physical Society

Authors & Affiliations

Olga Kuksenok, Rui D. M. Travasso, and Anna C. Balazs

  • Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 74, Iss. 1 — July 2006

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×