• Open Access

Macroscopic dynamics of neural networks with heterogeneous spiking thresholds

Richard Gast, Sara A. Solla, and Ann Kennedy
Phys. Rev. E 107, 024306 – Published 16 February 2023

Abstract

Mean-field theory links the physiological properties of individual neurons to the emergent dynamics of neural population activity. These models provide an essential tool for studying brain function at different scales; however, for their application to neural populations on large scale, they need to account for differences between distinct neuron types. The Izhikevich single neuron model can account for a broad range of different neuron types and spiking patterns, thus rendering it an optimal candidate for a mean-field theoretic treatment of brain dynamics in heterogeneous networks. Here we derive the mean-field equations for networks of all-to-all coupled Izhikevich neurons with heterogeneous spiking thresholds. Using methods from bifurcation theory, we examine the conditions under which the mean-field theory accurately predicts the dynamics of the Izhikevich neuron network. To this end, we focus on three important features of the Izhikevich model that are subject here to simplifying assumptions: (i) spike-frequency adaptation, (ii) the spike reset conditions, and (iii) the distribution of single-cell spike thresholds across neurons. Our results indicate that, while the mean-field model is not an exact model of the Izhikevich network dynamics, it faithfully captures its different dynamic regimes and phase transitions. We thus present a mean-field model that can represent different neuron types and spiking dynamics. The model comprises biophysical state variables and parameters, incorporates realistic spike resetting conditions, and accounts for heterogeneity in neural spiking thresholds. These features allow for a broad applicability of the model as well as for a direct comparison to experimental data.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 9 September 2022
  • Accepted 2 February 2023

DOI:https://doi.org/10.1103/PhysRevE.107.024306

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Nonlinear Dynamics

Authors & Affiliations

Richard Gast*, Sara A. Solla, and Ann Kennedy

  • Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA

  • *richard.gast@northwestern.edu

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 107, Iss. 2 — February 2023

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×