Anisotropic line tension of domains in lipid monolayers

E. Velasco and L. Mederos
Phys. Rev. E 100, 032413 – Published 27 September 2019

Abstract

We formulate a simple effective model to describe molecular interactions in a lipid monolayer and calculate the line tension between coexisting domains. The model represents lipid molecules in terms of two-dimensional anisotropic particles on the plane of the monolayer. These particles interact through forces that are believed to be relevant for the understanding of fundamental properties of the monolayer: van der Waals interactions originating from lipid chains and dipolar forces between dipole groups in the molecular heads. The model stresses the liquid-crystalline nature of the ordered phase in lipid monolayers and explains coexistence properties between ordered and disordered phases in terms of molecular parameters. Thermodynamic and interfacial properties of the model are analyzed using density-functional theory. In particular, the line tension at the interface between ordered and disordered phases turns out to be highly anisotropic with respect to the angle between the nematic director and the interface separating the coexisting phases. This important feature mainly results from the tilt angle of lipid chains and, to a lesser extent, from dipolar interactions perpendicular to the monolayer. The role of the two dipolar components, parallel and perpendicular to the monolayer, is assessed by comparing with computer simulation results for lipid monolayers.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 22 May 2019

DOI:https://doi.org/10.1103/PhysRevE.100.032413

©2019 American Physical Society

Physics Subject Headings (PhySH)

Physics of Living SystemsStatistical Physics & ThermodynamicsPolymers & Soft Matter

Authors & Affiliations

E. Velasco*

  • Departamento de Física Teórica de la Materia Condensada, Instituto de Física de la Materia Condensada (IFIMAC) and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain

L. Mederos

  • Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, C/Sor Juana Inés de la Cruz, 3, E-28049 Madrid, Spain

  • *enrique.velasco@uam.es
  • lmederos@icmm.csic.es

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 100, Iss. 3 — September 2019

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×