Holographic fermions in asymptotically scaling geometries with hyperscaling violation

ZhongYing Fan
Phys. Rev. D 88, 026018 – Published 24 July 2013

Abstract

We investigate holographic fermions in general asymptotically scaling geometries with hyperscaling violation exponent θ, which is a natural generalization of fermions in Lifshitz space-time. We prove that the retarded Green functions in this background satisfy the angle-resolved photoemission spectroscopy sum rules by introducing a dynamical source on a UV brane for zero density fermionic systems. The big difference from the Lifshitz case is that the mass of probe fermions decoupled from the UV theory and thus has no longer been restricted by the unitarity bound. We also study finite density fermions at finite temperature, with dynamical exponent z=2. We find that the dispersion relation is linear, but the logarithm of the spectral function is not linearly related to the logarithm of k=kkF, independent of charge q and θ. Furthermore, we show that, with the increasing of charge, new branches of Fermi surfaces emerge and tend to gather together to form a shell-like structure when the charge reaches some critical value beyond which a wide band pattern appears in the momentum-charge plane. However, all sharp peaks will be smoothed out when θ increases, no matter how much large the charge is.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 25 March 2013

DOI:https://doi.org/10.1103/PhysRevD.88.026018

© 2013 American Physical Society

Authors & Affiliations

ZhongYing Fan*

  • Department of Physics, Beijing Normal University, Beijing 100875, China

  • *zhyingfan@gmail.com

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 88, Iss. 2 — 15 July 2013

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×