Fermion masses and mixings in a μ-τ symmetric SO(10)

Anjan S. Joshipura, Bhavik P. Kodrani, and Ketan M. Patel
Phys. Rev. D 79, 115017 – Published 23 June 2009

Abstract

The μ-τ symmetry imposed on the neutrino mass matrix in the flavor basis is known to be quite predictive. We integrate this very specific neutrino symmetry into a more general framework based on the supersymmetric SO(10) grand unified theory. As in several other models, the fermion mass spectrum is determined by Hermitian mass matrices resulting from the renormalizable Yukawa couplings of the 16-plet of fermions with the Higgs fields transforming as 10, 126¯, and 120 representations of the SO(10) group. The μ-τ symmetry is spontaneously broken through the 120-plet. Consequences of this scheme are considered for fermion masses using both a type-I and a type-II seesaw mechanism. This scenario is shown to lead to a generalized CP invariance of the mass matrices and vanishing CP violating phases if the Yukawa couplings are invariant under the μ-τ symmetry. Small explicit breaking of the μ-τ symmetry is then shown to provide a very good understanding of all of the fermion masses and mixing. Detailed fits to the fermion spectrum are presented in several scenarios. One obtains a very good fit to all observables in the context of the type-I seesaw mechanism, but the type-II seesaw model also provides a good description except for the overall scale of the neutrino masses. Three major predictions on the leptonic mixing parameters in the type-I seesaw case are (i) the atmospheric mixing angle θ23l close to maximal, (ii) θ13l close to the present upper bound, and (iii) a negative but very small Dirac CP violating phase in the neutrino oscillations.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 12 May 2009

DOI:https://doi.org/10.1103/PhysRevD.79.115017

©2009 American Physical Society

Authors & Affiliations

Anjan S. Joshipura*, Bhavik P. Kodrani, and Ketan M. Patel

  • Physical Research Laboratory, Navarangpura, Ahmedabad-380 009, India

  • *anjan@prl.res.in
  • bhavik@prl.res.in
  • kmpatel@prl.res.in

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 79, Iss. 11 — 1 June 2009

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×