Gravity, Lorentz violation, and the standard model

V. Alan Kostelecký
Phys. Rev. D 69, 105009 – Published 17 May 2004
PDFExport Citation

Abstract

The role of the gravitational sector in the Lorentz- and CPT-violating standard-model extension (SME) is studied. A framework is developed for addressing this topic in the context of Riemann-Cartan spacetimes, which include as limiting cases the usual Riemann and Minkowski geometries. The methodology is first illustrated in the context of the QED extension in a Riemann-Cartan background. The full SME in this background is then considered, and the leading-order terms in the SME action involving operators of mass dimension three and four are constructed. The incorporation of arbitrary Lorentz and CPT violation into general relativity and other theories of gravity based on Riemann-Cartan geometries is discussed. The dominant terms in the effective low-energy action for the gravitational sector are provided, thereby completing the formulation of the leading-order terms in the SME with gravity. Explicit Lorentz symmetry breaking is found to be incompatible with generic Riemann-Cartan geometries, but spontaneous Lorentz breaking evades this difficulty.

  • Received 8 January 2004

DOI:https://doi.org/10.1103/PhysRevD.69.105009

©2004 American Physical Society

Authors & Affiliations

V. Alan Kostelecký

  • Physics Department, Indiana University, Bloomington, Indiana 47405, USA

References (Subscription Required)

Click to Expand
Issue

Vol. 69, Iss. 10 — 15 May 2004

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×