Practical approaches to analyzing PTA data: Cosmic strings with six pulsars

Hippolyte Quelquejay Leclere et al. (European Pulsar Timing Array)
Phys. Rev. D 108, 123527 – Published 15 December 2023

Abstract

We search for a stochastic gravitational wave background (SGWB) generated by a network of cosmic strings using six millisecond pulsars from Data Release 2 (DR2) of the European Pulsar Timing Array (EPTA). We perform a Bayesian analysis considering two models for the network of cosmic string loops, and compare it to a simple power-law model which is expected from the population of supermassive black hole binaries. Our main strong assumption is that the previously reported common red noise process is a SGWB. We find that the one-parameter cosmic string model is slightly favored over a power-law model thanks to its simplicity. If we assume a two-component stochastic signal in the data (supermassive black hole binary population and the signal from cosmic strings), we get a 95% upper limit on the string tension of log10(Gμ)<9.9 (10.5) for the two cosmic string models we consider. In extended two-parameter string models, we were unable to constrain the number of kinks. We test two approximate and fast Bayesian data analysis methods against the most rigorous analysis and find consistent results. These two fast and efficient methods are applicable to all SGWBs, independent of their source, and will be crucial for analysis of extended datasets.

  • Figure
  • Received 1 July 2023
  • Accepted 14 November 2023

DOI:https://doi.org/10.1103/PhysRevD.108.123527

© 2023 American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & Astrophysics

Authors & Affiliations

Click to Expand

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 108, Iss. 12 — 15 December 2023

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×