• Editors' Suggestion

Energy density of variational states

Leon Balents
Phys. Rev. B 90, 245116 – Published 8 December 2014

Abstract

We show, in several important and general cases, that a low variational energy density of a trial state is possible even when the trial state represents a different phase from the ground state. Specifically, we ask whether the ground-state energy density of a Hamiltonian whose ground state is in phase A can be approximated to arbitrary accuracy by a wave function, which represents a different phase B. We show this is indeed the case when A has discrete symmetry breaking order in one dimension or topological order in two dimensions, while B is disordered. We argue that, if reasonable conditions of physicality are imposed upon the trial wave function, then this is not possible when A has discrete symmetry breaking in dimensions greater than one and B is symmetric. Some other situations are also discussed.

  • Received 26 August 2014
  • Revised 7 November 2014

DOI:https://doi.org/10.1103/PhysRevB.90.245116

©2014 American Physical Society

Authors & Affiliations

Leon Balents

  • Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 90, Iss. 24 — 15 December 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×