Asymmetric Cherenkov acoustic reverse in topological insulators

Sergey Smirnov
Phys. Rev. B 90, 125305 – Published 8 September 2014

Abstract

A general phenomenon of the Cherenkov radiation known in optics or acoustics of conventional materials is a formation of a forward cone of, respectively, photons or phonons emitted by a particle accelerated above the speed of light or sound in those materials. Here we suggest three-dimensional topological insulators as a unique platform to fundamentally explore and practically exploit the acoustic aspect of the Cherenkov effect. We demonstrate that by applying an in-plane magnetic field to a surface of a three-dimensional topological insulator one may suppress the forward Cherenkov sound up to zero at a critical magnetic field. Above the critical field the Cherenkov sound acquires pure backward nature with the polar distribution differing from the forward one generated below the critical field. Potential applications of this asymmetric Cherenkov reverse are in the design of low energy electronic devices such as acoustic ratchets or, in general, in low power design of electronic circuits with a magnetic field control of the direction and magnitude of the Cherenkov dissipation.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 9 June 2014
  • Revised 26 August 2014

DOI:https://doi.org/10.1103/PhysRevB.90.125305

©2014 American Physical Society

Authors & Affiliations

Sergey Smirnov

  • Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 90, Iss. 12 — 15 September 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×