Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector

S. H. Liang, T. T. Zhang, P. Barate, J. Frougier, M. Vidal, P. Renucci, B. Xu, H. Jaffrès, J.-M. George, X. Devaux, M. Hehn, X. Marie, S. Mangin, H. X. Yang, A. Hallal, M. Chshiev, T. Amand, H. F. Liu, D. P. Liu, X. F. Han, Z. G. Wang, and Y. Lu
Phys. Rev. B 90, 085310 – Published 22 August 2014

Abstract

Binary information encoded within the spin of carriers can be transferred into corresponding right- or left-handed circularly polarized photons emitted from an active semiconductor medium via carrier-photon angular momentum conversion. In order to attain maximized spin injection at out-of-plane magnetic remanence, a number of material systems have been explored as possible solid-state spin injectors. However, the circular polarization (PC) of emitted light was still limited at 3–4% at remanence. Here, we demonstrate a sizable electroluminescence circular polarization from a III-V-based spin light-emitting diode at zero magnetic field with a perpendicular spin injector consisting of an ultrathin CoFeB ferromagnetic layer (1.2 nm) grown on a MgO tunnel barrier (2.5 nm). The maximum value of PC measured at zero field is as large as 20% at 25 K and still 8% at 300 K. These types of ultrathin perpendicular spin injectors are of great interest (i) to realize the electrical switching of the magnetization of the injector layer owing to the advanced spin-transfer torque properties of the CoFeB layer and (ii) to be directly embedded in optical cavities for spin lasers due to their very low optical absorption loss.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 17 May 2014
  • Revised 21 July 2014

DOI:https://doi.org/10.1103/PhysRevB.90.085310

©2014 American Physical Society

Authors & Affiliations

S. H. Liang1,2, T. T. Zhang3, P. Barate3, J. Frougier4, M. Vidal3, P. Renucci3, B. Xu5, H. Jaffrès4, J.-M. George4, X. Devaux1, M. Hehn1, X. Marie3, S. Mangin1, H. X. Yang6, A. Hallal6, M. Chshiev6, T. Amand3, H. F. Liu2, D. P. Liu2, X. F. Han2, Z. G. Wang5, and Y. Lu1,*

  • 1Institut Jean Lamour, UMR 7198, CNRS-Nancy Université, BP 239, 54506 Vandœuvre, France
  • 2Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 3Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 avenue de Rangueil, 31077 Toulouse, France
  • 4Unité Mixte de Physique CNRS/Thales and Université Paris-Sud 11, 1 avenue A. Fresnel, 91767 Palaiseau, France
  • 5Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China
  • 6SPINTEC, UMR 8191, CEA-INAC/CNRS/UJF-Grenoble 1/G-INP, 38054 Grenoble, France

  • *Corresponding author: yuan.lu@univ-lorraine.fr

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 90, Iss. 8 — 15 August 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×