Ultrafast band-gap oscillations in iron pyrite

Brian Kolb and Alexie M. Kolpak
Phys. Rev. B 88, 235208 – Published 20 December 2013

Abstract

With its combination of favorable band gap, high absorption coefficient, material abundance, and low cost, iron pyrite, FeS2, has received a great deal of attention over the past decades as a promising material for photovoltaic applications such as solar cells and photoelectrochemical cells. Devices made from pyrite, however, exhibit open circuit voltages significantly lower than predicted, and despite a recent resurgence of interest in the material, there currently exists no widely accepted explanation for this disappointing behavior. In this paper, we show that phonons, which have been largely overlooked in previous efforts, may play a significant role. Using fully self-consistent GW calculations, we demonstrate that a phonon mode related to the oscillation of the sulfur-sulfur bond distance in the pyrite structure is strongly coupled to the energy of the conduction-band minimum, leading to an ultrafast (100 fs) oscillation in the band gap. Depending on the coherency of the phonons, we predict that this effect can cause changes of up to ±0.3 eV relative to the accepted FeS2 band gap at room temperature. Harnessing this effect via temperature or irradiation with infrared light could open up numerous possibilities for novel devices such as ultrafast switches and adaptive solar absorbers.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 7 August 2013

DOI:https://doi.org/10.1103/PhysRevB.88.235208

©2013 American Physical Society

Authors & Affiliations

Brian Kolb and Alexie M. Kolpak

  • Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 88, Iss. 23 — 15 December 2013

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×