Antiferromagnetic state in bilayer graphene

Maxim Kharitonov
Phys. Rev. B 86, 195435 – Published 30 November 2012

Abstract

Motivated by the recent experiment of Velasco Jr. et al. [J. Velasco Jr. et al., Nat. Nanotechnology 7, 156 (2012)], we develop a mean-field theory of the interaction-induced antiferromagnetic (AF) state in bilayer graphene at charge neutrality point at arbitrary perpendicular magnetic field B. We demonstrate that the AF state can persist at all B. At higher B, the state continuously crosses over to the AF phase of the ν=0 quantum Hall ferromagnet, recently argued to be realized in the insulating ν=0 state. The mean-field quasiparticle gap is finite at B=0 and grows with increasing B, becoming quasilinear in the quantum Hall regime, in accord with the reported behavior of the transport gap. By adjusting the two free parameters of the model, we obtain a simultaneous quantitative agreement between the experimental and theoretical values of the key parameters of the gap dependence—its zero-field value and slope at higher fields. Our findings suggest that the insulating state observed in bilayer graphene in Ref. 1 is antiferromagnetic (canted, once the Zeeman effect is taken into account) at all magnetic fields.

  • Figure
  • Figure
  • Figure
  • Received 23 April 2012

DOI:https://doi.org/10.1103/PhysRevB.86.195435

©2012 American Physical Society

Authors & Affiliations

Maxim Kharitonov

  • Center for Materials Theory, Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 86, Iss. 19 — 15 November 2012

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×