Dipole-exchange spin waves in perpendicularly magnetized discs: Role of the Oersted field

R. E. Arias and D. L. Mills
Phys. Rev. B 75, 214404 – Published 4 June 2007

Abstract

We develop the theory of the exchange dipole spin waves in thin circular discs for the case where the magnetization is nominally perpendicular to the plane. Our interest is in the circumstance where a transport current is injected into the disc, with current also perpendicular to the plane of the disc. Such a current creates an azimuthal magnetic field, referred to often as the Oersted field. We develop the theory of the influence of the Oersted field on the spin-wave spectrum of the disc. This field produces a vortex state. We suggest that this vortex state is stable down to zero applied field. If the external applied field H0 is in the +z direction, perpendicular to the plane of the disc, the vortex state has magnetization at the center of the disc also parallel to +z always. This is the case even when H0<4πMS, where the magnetization at the center of the disc is antiparallel to the local field H04πMS there. We present calculations of the current dependence of spin-wave frequencies of several modes as a function of applied magnetic field. We also address an issue overlooked in previous studies of spin waves in thin discs. This is that for quantitative purposes, it is not sufficient to describe internal dipole fields generated by the spin motions simply by adding an effective internal field 4πmzẑ to the equations of motion, with mz the component of dynamic magnetization normal to the surface. For samples of present interest, we derive terms we call gradient corrections, and these play a role quantitatively comparable to exchange itself in the analysis of the spin-wave frequencies. Quantitative studies of spin dynamics in such samples thus must include the gradient corrections.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 5 March 2007

DOI:https://doi.org/10.1103/PhysRevB.75.214404

©2007 American Physical Society

Authors & Affiliations

R. E. Arias1 and D. L. Mills2

  • 1Departamento de Fisica, FCFM, Universidad de Chile, Casilla 487-3, Santiago, Chile
  • 2Department of Physics and Astronomy, University of California, Irvine, California 92697, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 75, Iss. 21 — 1 June 2007

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×