Momentum-dependent excitation processes in crystalline and amorphous films of conjugated oligomers

E. Zojer, M. Knupfer, Z. Shuai, J. Fink, J. L. Brédas, H.-H. Hörhold, J. Grimme, U. Scherf, T. Benincori, and G. Leising
Phys. Rev. B 61, 16561 – Published 15 June 2000
PDFExport Citation

Abstract

The electronic structure of periodic materials is usually described on the basis of band-structure models, in which each state is not only characterized by its energy but also by the corresponding electron momentum. In this paper we present investigations of momentum-dependent excitation processes in a number of molecular crystals and amorphous thin films. For our studies we have chosen ladder-type quinquephenyl (5LP), distyrylbenzene (3PV), a substituted quinquephenylenevinylene (5PV), and a bridged quarterthienyl (4TB). These substances are representative for several classes of conjugated organic materials. Their physical properties are dominated by the molecular building blocks. The investigated films, however, also allow us to study differences in the characteristics of crystalline (3PV and 4TB), partly amorphous (5LP) and fully amorphous (5PV) systems. Momentum-dependent excitations are induced by inelastic electron scattering in electron-energy-loss spectroscopy (EELS) experiments. The experimental data are compared to molecule based post-Hartree–Fock quantum-chemical simulations performed with the intermediate neglect of differential overlap (INDO) approach coupled to a configuration interaction (CI) technique applying the proper momentum-dependent transition matrix elements. Our results show that even in relatively small systems the molecular electronic states can be characterized by an associated range in momentum space. In addition, differences between inelastic electron scattering spectra for low values of momentum transfer and the optical data obtained for the crystalline samples underline the strong impact of light propagation on the absorption characteristics of highly anisotropic crystalline materials.

  • Received 9 November 1999

DOI:https://doi.org/10.1103/PhysRevB.61.16561

©2000 American Physical Society

Authors & Affiliations

E. Zojer*

  • Institut für Festkörperphysik, Technische Universität Graz, Petersgasse 16, A-8010 Graz, Austria

M. Knupfer

  • Institut für Festkörper- und Werkstofforschung, Postfach 270016, D-01171 Dresden, Germany

Z. Shuai

  • Service de Chimie des Matériaux Nouveaux, Centre de Recherche en Electronique et Photonique Moléculaires, Université de Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium

J. Fink

  • Institut für Festkörper- und Werkstofforschung, Postfach 270016, D-01171 Dresden, Germany

J. L. Brédas

  • Service de Chimie des Matériaux Nouveaux, Centre de Recherche en Electronique et Photonique Moléculaires, Université de Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium
  • Department of Chemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041

H.-H. Hörhold

  • Institut für Organische und Makromolekulare Chemie, FSU Jena, Humboldtstraße 10, D-07743 Jena, Germany

J. Grimme and U. Scherf

  • Max-Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany

T. Benincori

  • Dipartimento di scienze chimiche, fisiche e matematiche, Universita’ degli studi dell’insubria via lucini, 3-22100 Como-Italy

G. Leising

  • Institut für Festkörperphysik, Technische Universität Graz, Petersgasse 16, A-8010 Graz, Austria

  • *Electronic address: Egbert@FFPHAL01.tu-graz.ac.at

References (Subscription Required)

Click to Expand
Issue

Vol. 61, Iss. 24 — 15 June 2000

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×