• Open Access

Band structure and end states in InAs/GaSb core-shell-shell nanowires

Florinda Viñas Boström, Athanasios Tsintzis, Michael Hell, and Martin Leijnse
Phys. Rev. B 102, 195434 – Published 30 November 2020

Abstract

Quantum wells in InAs/GaSb heterostructures can be tuned to a topological regime associated with the quantum spin Hall effect, which arises due to an inverted band gap and hybridized electron and hole states. Here, we investigate electron-hole hybridization and the fate of the quantum spin Hall effect in a quasi-one-dimensional geometry, realized in a core-shell-shell nanowire with an insulator core and InAs and GaSb shells. We calculate the band structure for an infinitely long nanowire using k·p theory within the Kane model and the envelope function approximation, then map the result onto a Bernevig-Hughes-Zhang model which is used to investigate finite-length wires. Clearly, quantum spin Hall edge states cannot appear in the core-shell-shell nanowires which lack one-dimensional edges, but in the inverted band gap regime we find that the finite-length wires instead host localized states at the wire ends. These end states are not topologically protected; they are fourfold degenerate and split into two Kramers pairs in the presence of potential disorder along the axial direction. However, there is some remnant of the topological protection of the quantum spin Hall edge states in the sense that the end states are fully robust to (time-reversal preserving) angular disorder, as long as the bulk band gap is not closed.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 10 July 2020
  • Accepted 30 October 2020

DOI:https://doi.org/10.1103/PhysRevB.102.195434

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by Bibsam.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Florinda Viñas Boström, Athanasios Tsintzis, Michael Hell, and Martin Leijnse

  • Division of Solid State Physics and NanoLund, Lund University, Box 118, S-221 00 Lund, Sweden

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 102, Iss. 19 — 15 November 2020

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×