Quantized phase slips with hysteresis in rotating spin-orbit-coupled Bose-Einstein condensates

Chuanyi Zhang
Phys. Rev. A 95, 033612 – Published 10 March 2017

Abstract

Recently, hysteresis has been observed experimentally in a quantized superfluid circuit [S. Eckel, J. G. Lee, F. Jendrzejewski, N. Murray, C. W. Clark, C. J. Lobb, W. D. Phillips, M. Edwards, and G. K. Campbell, Nature (London) 506, 200 (2014)], which is a very important step for developing atomtronic devices. Here we find that quantized phase slips occur as the angular velocity rises, and the average angular momenta are quantized at special angular velocities, immune to the nonlinear interactions. When the spin and orbital angular momentum coupling is introduced, we find that two hysteresis loops could arise for each spin, and there exists a phase slip for spin up in one loop and spin down in the other loop. At the special angular velocities, a phase slip emerges for spin down in the lower state of the loop. Especially, multistability appears if the angular velocity is located in the hysteretic region. These results can promote experimental verification and pave the way for atomtronic devices.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 21 December 2016

DOI:https://doi.org/10.1103/PhysRevA.95.033612

©2017 American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & Optical

Authors & Affiliations

Chuanyi Zhang*

  • Henan Key Laboratory of Photovoltaic Materials and School of Physics and Electronics, Henan University, Kaifeng 475004, China

  • *Author to whom correspondence should be addressed: chyzhang@henu.edu.cn

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 95, Iss. 3 — March 2017

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×