Diffraction in time: An exactly solvable model

Arseni Goussev
Phys. Rev. A 87, 053621 – Published 29 May 2013

Abstract

In recent years, matter-wave interferometry has attracted growing attention due to its unique suitability for high-precision measurements and the study of fundamental aspects of quantum theory. Diffraction and interference of matter waves can be observed not only at a spatial aperture (such as a screen edge, slit, or grating), but also at a time-domain aperture (such as an absorbing barrier, or “shutter,” that is being periodically switched on and off). The wave phenomenon of the latter type is commonly referred to as “diffraction in time.” Here, we introduce a versatile, exactly solvable model of diffraction in time. It describes time evolution of an arbitrary initial quantum state in the presence of a time-dependent absorbing barrier, governed by an arbitrary aperture function. Our results enable a quantitative description of diffraction and interference patterns in a large variety of setups, and may be used to devise new diffraction and interference experiments with atoms and molecules.

  • Received 19 March 2013

DOI:https://doi.org/10.1103/PhysRevA.87.053621

©2013 American Physical Society

Authors & Affiliations

Arseni Goussev

  • Department of Mathematics and Information Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, United Kingdom and Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, D-01187 Dresden, Germany

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 87, Iss. 5 — May 2013

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×