Effective time-independent description of optical lattices with periodic driving

Andreas Hemmerich
Phys. Rev. A 81, 063626 – Published 21 June 2010

Abstract

For a periodically driven quantum system, an effective time-independent Hamiltonian is derived with an eigenenergy spectrum, which in the regime of large driving frequencies approximates the quasienergies of the corresponding Floquet Hamiltonian. The effective Hamiltonian is evaluated for the case of optical lattice models in the tight-binding regime subjected to strong periodic driving. Three scenarios are considered: a periodically shifted one-dimensional (1D) lattice, a two-dimensional (2D) square lattice with inversely phased temporal modulation of the well depths of adjacent lattice sites, and a 2D lattice subjected to an array of microscopic rotors commensurate with its plaquette structure. In the 1D scenario, the rescaling of the tunneling energy, previously considered by Eckardt et al. [Phys. Rev. Lett. 95, 260404 (2005)] is reproduced. The 2D lattice with well-depth modulation turns out as a generalization of the 1D case. In the 2D case with staggered rotation, the expression previously found in the case of weak driving by Lim et al. [Phys. Rev. Lett. 100, 130402 (2008)] is generalized, such that its interpretation in terms of an artificial staggered magnetic field can be extended into the regime of strong driving.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 22 March 2010

DOI:https://doi.org/10.1103/PhysRevA.81.063626

©2010 American Physical Society

Authors & Affiliations

Andreas Hemmerich

  • Institut für Laser-Physik, Universität Hamburg, Luruper Chaussee 149, DE-22761 Hamburg, Germany

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 81, Iss. 6 — June 2010

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×