Collective modes and superflow instabilities of strongly correlated Fermi superfluids

R. Ganesh, A. Paramekanti, and A. A. Burkov
Phys. Rev. A 80, 043612 – Published 16 October 2009

Abstract

We study the superfluid phase of the one-band attractive Hubbard model of fermions as a prototype of a strongly correlated s-wave fermion superfluid on a lattice. We show that the collective mode spectrum of this superfluid exhibits, in addition to the long wavelength sound mode, a sharp roton mode over a wide range of densities and interaction strengths. We compute the sound velocity and the roton gap within a generalized random phase approximation (GRPA) and show that the GRPA results are in good agreement, at strong coupling, with a spin-wave analysis of the appropriate strong-coupling pseudospin model. We also investigate, using this two-pronged approach, the breakdown of superfluidity in the presence of a supercurrent. We find that the superflow can break down at a critical flow momentum via several distinct mechanisms—depairing, Landau instabilities or dynamical instabilities—depending on the dimension, the interaction strength and the fermion density. The most interesting of these instabilities is a charge modulation dynamical instability which is distinct from previously studied dynamical instabilities of Bose superfluids. The charge order associated with this instability can be of two types: (i) a commensurate checkerboard modulation driven by softening of the roton mode at the Brillouin zone corner, or, (ii) an incommensurate density modulation arising from superflow-induced finite momentum pairing of Bogoliubov quasiparticles. We elucidate the dynamical phase diagram showing the critical flow momentum of the leading instability over a wide range of fermion densities and interaction strengths and point out implications of our results for experiments on cold atom fermion superfluids in an optical lattice.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 29 April 2009

DOI:https://doi.org/10.1103/PhysRevA.80.043612

©2009 American Physical Society

Authors & Affiliations

R. Ganesh and A. Paramekanti

  • Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7

A. A. Burkov

  • Department of Physics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 80, Iss. 4 — October 2009

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×