Theory of two-photon interactions with broadband down-converted light and entangled photons

Barak Dayan
Phys. Rev. A 76, 043813 – Published 11 October 2007

Abstract

When two-photon interactions are induced by down-converted light with a bandwidth that exceeds the pump bandwidth, they can obtain a behavior that is pulselike temporally, yet spectrally narrow. At low photon fluxes this behavior reflects the time and energy entanglement between the down-converted photons. However, two-photon interactions such as two-photon absorption (TPA) and sum-frequency generation (SFG) can exhibit such a behavior even at high power levels, as long as the final state (i.e., the atomic level in TPA, or the generated light in SFG) is narrow-band enough. This behavior does not depend on the squeezing properties of the light, is insensitive to linear losses, and has potential applications. In this paper we describe analytically this behavior for traveling-wave down conversion with continuous or pulsed pumping, both for high- and low-power regimes. For this we derive a quantum-mechanical expression for the down-converted amplitude generated by an arbitrary pump, and formulate operators that represent various two-photon interactions induced by broadband light. This model is in excellent agreement with experimental results of TPA and SFG with high-power down-converted light and with entangled photons [Dayan et al., Phys. Rev. Lett. 93, 023005 (2004); 94, 043602 (2005); Pe’er et al., ibid. 94, 073601 (2005)].

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 20 April 2007

DOI:https://doi.org/10.1103/PhysRevA.76.043813

©2007 American Physical Society

Authors & Affiliations

Barak Dayan

  • Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, Pasadena, California 91125, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 76, Iss. 4 — October 2007

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×