Slow Spin Relaxation of Optically Polarized Sodium Atoms

H. G. Dehmelt
Phys. Rev. 105, 1487 – Published 1 March 1957
PDFExport Citation

Abstract

In order to obtain as narrow as possible paramagnetic resonance signals, it is of importance to investigate the conditions under which long relaxation times can be realized. In the present experiment on sodium atoms diffusing in argon gas, relaxation due to sodium-sodium collisions was minimized by employing very low sodium partial vapor pressures (about 107 mm Hg). While at lower pressures the argon is serving its function well to slow down relaxation by inhibiting wall diffusion, at about 10 cm Hg relaxation due to sodium-argon collisions becomes the decisive factor. Nevertheless it was possible to realize a relaxation time of 0.21 sec for a 1-liter spherical bulb filled with 3 cm argon. About 0.02 sec was found for a 0.1-liter, 40 cm argon sample. In carrying out the experiments, optical pumping by circularly polarized resonance radiation was used to create an orientation of the sodium atoms which then was monitored by measuring the transmission of the pumping radiation through the sample. By suddenly reversing a small axial magnetic field, the polarization of the atoms could be made to reverse too. From the decay rates of this inverted polarization under the combined effects of relaxation and continuing optical pumping, the experimental relaxation times were deduced. The strong signals obtained are indicative of available signal to noise ratios in future radio-frequency resonance reorientation experiments using the transmission monitoring technique. A theoretical analysis of the optical pumping process, including the dynamic aspects and allowing for collisions with argon that the sodium atoms undergo while in the excited state, was carried out and used to describe the experimental data.

  • Received 29 November 1956

DOI:https://doi.org/10.1103/PhysRev.105.1487

©1957 American Physical Society

Authors & Affiliations

H. G. Dehmelt

  • Department of Physics, University of Washington, Seattle, Washington

References (Subscription Required)

Click to Expand
Issue

Vol. 105, Iss. 5 — March 1957

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Journals Archive

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×