Sleep-related benefits to transitive inference are modulated by encoding strength and joint rank

  1. Penny Lewis
  1. Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, Wales CF24 4HQ, United Kingdom
  1. Corresponding author: foldesta{at}cardiff.ac.uk

Abstract

Transitive inference is a measure of relational learning that has been shown to improve across sleep. Here, we examine this phenomenon further by studying the impact of encoding strength and joint rank. In experiment 1, participants learned adjacent premise pairs and were then tested on inferential problems derived from those pairs. In line with prior work, we found improved transitive inference performance after retention across a night of sleep compared with wake alone. Experiment 2 extended these findings using a within-subject design and found superior transitive inference performance on a hierarchy, consolidated across 27 h including sleep compared with just 3 h of wake. In both experiments, consolidation-related improvement was enhanced when presleep learning (i.e., encoding strength) was stronger. We also explored the interaction of these effects with the joint rank effect, in which items were scored according to their rank in the hierarchy, with more dominant item pairs having the lowest scores. Interestingly, the consolidation-related benefit was greatest for more dominant inference pairs (i.e., those with low joint rank scores). Overall, our findings provide further support for the improvement of transitive inference across a consolidation period that includes sleep. We additionally show that encoding strength and joint rank strongly modulate this effect.

Footnotes

  • Received April 30, 2023.
  • Accepted July 11, 2023.

This article, published in Learning & Memory, is available under a Creative Commons License (Attribution 4.0 International), as described at http://creativecommons.org/licenses/by/4.0/.

| Table of Contents
OPEN ACCESS ARTICLE