CREB down-regulation in the laterodorsal thalamic nucleus deteriorates memory consolidation in rats

  1. Bin Wang
  1. Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian 116044, China
  1. Corresponding author: binwang2008{at}126.com

Abstract

The laterodorsal thalamic nucleus (LD) is believed to play roles in learning and memory, especially spatial tasks. However, the molecular mechanism that underlies the cognitive process in the LD remains unclear and needs to be investigated. So far, there is plenty of evidence indicating that plasticity has been in some of the cortical or subcortical regions closely related to the LD, particularly stimulated by external learning tasks. Therefore, the present study aimed to test the hypothesis that similar effect exists in the LD. The transcription factor, cAMP-response element binding protein (CREB), works essentially in brain plasticity by tightly regulating the transcriptional level of memory-related target genes, and the increase of activated CREB (phosphorylated CREB, p-CREB) could facilitate memory consolidation. In this study, the siRNA against CREB was synthesized to down-regulate the CREB mRNA in the LD. After Morris water maze behavioral training, CREB siRNA rats exhibited a memory deficiency, significantly diverging from the control groups. In subsequent detection, the expression of p-CREB of these memory impairment rats attenuated. These results support the hypothesis that CREB-mediated plasticity contributes to memory facilitation and consolidation in the LD.

  • Received March 17, 2019.
  • Accepted April 19, 2019.

This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first 12 months after the full-issue publication date (see http://learnmem.cshlp.org/site/misc/terms.xhtml). After 12 months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

| Table of Contents