Pin1 modulates RNA polymerase II activity during the transcription cycle

  1. Yu-Xin Xu and
  2. James L. Manley1
  1. Department of Biological Sciences, Columbia University, New York, New York 10027, USA

Abstract

The C-terminal domain of the RNA polymerase (RNAP) II largest subunit (CTD) plays a critical role in coordinating multiple events in pre-mRNA transcription and processing. Previously we reported that the peptidyl prolyl isomerase Pin1 modulates RNAP II function during the cell cycle. Here we provide evidence that Pin1 affects multiple aspects of RNAP II function via its regulation of CTD phosphorylation. Using chromatin immunoprecipitation (ChIP) assays with CTD phospho-specific antibodies, we confirm that RNAP II displays a dynamic association with specific genes during the cell cycle, preferentially associating with transcribed genes in S phase, while disassociating in M phase in a matter that correlates with changes in CTD phosphorylation. Using inducible Pin1 cell lines, we show that Pin1 overexpression is sufficient to release RNAP II from chromatin, which then accumulates in a hyperphosphorylated form in nuclear speckle-associated structures. In vitro transcription assays show that Pin1 inhibits transcription in nuclear extract, while an inactive Pin1 mutant in fact stimulates it. Several assays indicate that the inhibition largely reflects Pin1 activity during transcription initiation and not elongation, suggesting that Pin1 modulates CTD phosphorylation, and RNAP II activity, during an early stage of the transcription cycle.

Keywords

Footnotes

| Table of Contents

Life Science Alliance