De novo assembly using low-coverage short read sequence data from the rice pathogen Pseudomonas syringae pv. oryzae

  1. Josephine A. Reinhardt1,5,
  2. David A. Baltrus1,5,
  3. Marc T. Nishimura1,
  4. William R. Jeck1,
  5. Corbin D. Jones1,2,3 and
  6. Jeffery L. Dangl1,2,3,4,6
  1. 1 Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA;
  2. 2 Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA;
  3. 3 Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA;
  4. 4 Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
    1. 5 These authors contributed equally to this work.

    Abstract

    We developed a novel approach for de novo genome assembly using only sequence data from high-throughput short read sequencing technologies. By combining data generated from 454 Life Sciences (Roche) and Illumina (formerly known as Solexa sequencing) sequencing platforms, we reliably assembled genomes into large scaffolds at a fraction of the traditional cost and without use of a reference sequence. We applied this method to two isolates of the phytopathogenic bacteria Pseudomonas syringae. Sequencing and reassembly of the well-studied tomato and Arabidopsis pathogen, PtoDC3000, facilitated development and testing of our method. Sequencing of a distantly related rice pathogen, Por1_6, demonstrated our method's efficacy for de novo assembly of novel genomes. Our assembly of Por1_6 yielded an N50 scaffold size of 531,821 bp with >75% of the predicted genome covered by scaffolds over 100,000 bp. One of the critical phenotypic differences between strains of P. syringae is the range of plant hosts they infect. This is largely determined by their complement of type III effector proteins. The genome of Por1_6 is the first sequenced for a P. syringae isolate that is a pathogen of monocots, and, as might be predicted, its complement of type III effectors differs substantially from the previously sequenced isolates of this species. The genome of Por1_6 helps to define an expansion of the P. syringae pan-genome, a corresponding contraction of the core genome, and a further diversification of the type III effector complement for this important plant pathogen species.

    Footnotes

    • 6 Corresponding author.

      E-mail dangl{at}email.unc.edu; fax (919) 962-1625.

    • [Supplemental material is available online at www.genome.org. The sequence data for the Por1_6 genome have been submitted to GenBank (http://www.ncbi.nlm.nih.gov/Genbank/) under accession no. ABZR00000000.]

    • Article published online before print. Article and publication date are at http://www.genome.org/cgi/doi/10.1101/gr.083311.108.

      • Received July 15, 2008.
      • Accepted November 5, 2008.
    • Freely available online through the Genome Research open access option.

    | Table of Contents
    OPEN ACCESS ARTICLE

    Preprint Server