1887

Abstract

subsp. BBMN68, an anaerobic probiotic isolated from healthy centenarian faeces, shows low oxygen (3 %, v/v) tolerance. To understand the effects of oxidative stress and the mechanisms protecting against it in this strain, a proteomic approach was taken to analyse changes in the cellular protein profiles of BBMN68 under the following oxygen-stress conditions. Mid-exponential phase BBMN68 cells grown in MRS broth at 37 °C were exposed to 3 % O for 1 h (I) or 9 h (II), and stationary phase cells were subjected to 3 % O for 1 h (III). Respective controls were grown under identical conditions but were not exposed to O. A total of 51 spots with significant changes after exposure to oxygen were identified, including the oxidative stress-protective proteins alkyl hydroperoxide reductase C22 (AhpC) and pyridine nucleotide-disulfide reductase (PNDR), and the DNA oxidative damage-protective proteins DNA-binding ferritin-like protein (Dps), ribonucleotide reductase (NrdA) and nucleotide triphosphate (NTP) pyrophosphohydrolases (MutT1). Changes in polynucleotide phosphorylase (PNPase) plus enolase, which may play important roles in scavenging oxidatively damaged RNA, were also found. Following validation at the transcriptional level of differentially expressed proteins, the physiological and biochemical functions of BBMN68 Dps were further proven by and tests under oxidative stress. Our results reveal the key oxidative stress-protective proteins and DNA oxidative damage-protective proteins involved in the defence strategy of BBMN68 against oxygen, and provide the first proteomic information toward understanding the responses of and other anaerobes to oxygen stress.

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 31071507)
  • National High Technology Research and Development Program
  • ‘863’ Program (Award 2008AA10Z310)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.044297-0
2011-06-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/6/1573.html?itemId=/content/journal/micro/10.1099/mic.0.044297-0&mimeType=html&fmt=ahah

References

  1. Agafonov D. E., Kolb V. A., Spirin A. S. ( 2001). Ribosome-associated protein that inhibits translation at the aminoacyl-tRNA binding stage. EMBO Rep 2:399–402[PubMed] [CrossRef]
    [Google Scholar]
  2. Avila C. L., Rapisarda V. A., Farías R. N., De Las Rivas J., Chehín R. ( 2007). Linear array of conserved sequence motifs to discriminate protein subfamilies: study on pyridine nucleotide-disulfide reductases. BMC Bioinformatics 8:96 [View Article][PubMed]
    [Google Scholar]
  3. Baughn A. D., Malamy M. H. ( 2004). The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature 427:441–444 [View Article][PubMed]
    [Google Scholar]
  4. Biavati B., Mattarelli P. ( 2001). The family Bifidobacteriaceae . The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community, 3rd electronic edn. Dworkin M. New York: Springer-Verlag;
    [Google Scholar]
  5. Blandino G., Fazio D., Di Marco R. ( 2008). Probiotics: overview of microbiological and immunological characteristics. Expert Rev Anti Infect Ther 6:497–508 [View Article][PubMed]
    [Google Scholar]
  6. Bryk R., Griffin P., Nathan C. ( 2000). Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407:211–215 [View Article][PubMed]
    [Google Scholar]
  7. Candiano G., Bruschi M., Musante L., Santucci L., Ghiggeri G. M., Carnemolla B., Orecchia P., Zardi L., Righetti P. G. ( 2004). Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25:1327–1333 [View Article][PubMed]
    [Google Scholar]
  8. Carpousis A. J. ( 2007). The RNA degradosome of Escherichia coli: an mRNA-degrading machine assembled on RNase E. Annu Rev Microbiol 61:71–87 [View Article][PubMed]
    [Google Scholar]
  9. Castellanos-Juárez F. X., Alvarez-Alvarez C., Yasbin R. E., Setlow B., Setlow P., Pedraza-Reyes M. ( 2006). YtkD and MutT protect vegetative cells but not spores of Bacillus subtilis from oxidative stress. J Bacteriol 188:2285–2289 [View Article][PubMed]
    [Google Scholar]
  10. Ceci P., Ilari A., Falvo E., Giangiacomo L., Chiancone E. ( 2005). Reassessment of protein stability, DNA binding, and protection of Mycobacterium smegmatis Dps. J Biol Chem 280:34776–34785 [View Article][PubMed]
    [Google Scholar]
  11. Choi S. H., Baumler D. J., Kaspar C. W. ( 2000). Contribution of dps to acid stress tolerance and oxidative stress tolerance in Escherichia coli O157 : H7. Appl Environ Microbiol 66:3911–3916 [View Article][PubMed]
    [Google Scholar]
  12. Das A., Silaghi-Dumitrescu R., Ljungdahl L. G., Kurtz D. M. Jr ( 2005). Cytochrome bd oxidase, oxidative stress, and dioxygen tolerance of the strictly anaerobic bacterium Moorella thermoacetica . J Bacteriol 187:2020–2029 [View Article][PubMed]
    [Google Scholar]
  13. David S. S., O’Shea V. L., Kundu S. ( 2007). Base-excision repair of oxidative DNA damage. Nature 447:941–950 [View Article][PubMed]
    [Google Scholar]
  14. Diaz P. I., Slakeski N., Reynolds E. C., Morona R., Rogers A. H., Kolenbrander P. E. ( 2006). Role of oxyR in the oral anaerobe Porphyromonas gingivalis . J Bacteriol 188:2454–2462 [View Article][PubMed]
    [Google Scholar]
  15. Galperin M. Y., Moroz O. V., Wilson K. S., Murzin A. G. ( 2006). House cleaning, a part of good housekeeping. Mol Microbiol 59:5–19 [View Article][PubMed]
    [Google Scholar]
  16. Gardner P. R., Fridovich I. ( 1991). Superoxide sensitivity of the Escherichia coli aconitase. J Biol Chem 266:19328–19333[PubMed]
    [Google Scholar]
  17. Grinberg I., Shteinberg T., Gorovitz B., Aharonowitz Y., Cohen G., Borovok I. ( 2006). The Streptomyces NrdR transcriptional regulator is a Zn ribbon/ATP cone protein that binds to the promoter regions of class Ia and class II ribonucleotide reductase operons. J Bacteriol 188:7635–7644 [View Article][PubMed]
    [Google Scholar]
  18. Grove A., Wilkinson S. P. ( 2005). Differential DNA binding and protection by dimeric and dodecameric forms of the ferritin homolog Dps from Deinococcus radiodurans . J Mol Biol 347:495–508 [View Article][PubMed]
    [Google Scholar]
  19. Gupta S., Chatterji D. ( 2003). Bimodal protection of DNA by Mycobacterium smegmatis DNA-binding protein from stationary phase cells. J Biol Chem 278:5235–5241 [View Article][PubMed]
    [Google Scholar]
  20. Haikarainen T., Papageorgiou A. C. ( 2010). Dps-like proteins: structural and functional insights into a versatile protein family. Cell Mol Life Sci 67:341–351 [View Article][PubMed]
    [Google Scholar]
  21. Halsey T. A., Vazquez-Torres A., Gravdahl D. J., Fang F. C., Libby S. J. ( 2004). The ferritin-like Dps protein is required for Salmonella enterica serovar Typhimurium oxidative stress resistance and virulence. Infect Immun 72:1155–1158 [View Article][PubMed]
    [Google Scholar]
  22. Hao Y., Huang D., Guo H., Xiao M., An H., Zhao L., Zuo F., Zhang B., Hu S. et al. ( 2011). Complete genome sequence of Bifidobacterium longum subsp. longum BBMN68, a new strain from healthy Chinese centenarian. J Bacteriol 193:787–788 [View Article][PubMed]
    [Google Scholar]
  23. Hayakawa H., Sekiguchi M. ( 2006). Human polynucleotide phosphorylase protein in response to oxidative stress. Biochemistry 45:6749–6755 [View Article][PubMed]
    [Google Scholar]
  24. Huang C. H., Lee I. L., Yeh I. J., Liao J. H., Ni C. L., Wu S. H., Chiou S. H. ( 2010). Upregulation of a non-heme iron-containing ferritin with dual ferroxidase and DNA-binding activities in Helicobacter pylori under acid stress. J Biochem 147:535–543 [View Article][PubMed]
    [Google Scholar]
  25. Ishibashi T., Hayakawa H., Ito R., Miyazawa M., Yamagata Y., Sekiguchi M. ( 2005). Mammalian enzymes for preventing transcriptional errors caused by oxidative damage. Nucleic Acids Res 33:3779–3784 [View Article][PubMed]
    [Google Scholar]
  26. Kawasaki S., Mimura T., Satoh T., Takeda K., Niimura Y. ( 2006). Response of the microaerophilic Bifidobacterium species, B. boum and B. thermophilum, to oxygen. Appl Environ Microbiol 72:6854–6858 [View Article][PubMed]
    [Google Scholar]
  27. Kawasaki S., Sakai Y., Takahashi T., Suzuki I., Niimura Y. ( 2009a). O2 and reactive oxygen species detoxification complex, composed of O2-responsive NADH : rubredoxin oxidoreductase-flavoprotein A2-desulfoferrodoxin operon enzymes, rubperoxin, and rubredoxin, in Clostridium acetobutylicum . Appl Environ Microbiol 75:1021–1029 [View Article][PubMed]
    [Google Scholar]
  28. Kawasaki S., Satoh T., Todoroki M., Niimura Y. ( 2009b). b-Type dihydroorotate dehydrogenase is purified as a H2O2-forming NADH oxidase from Bifidobacterium bifidum . Appl Environ Microbiol 75:629–636 [View Article][PubMed]
    [Google Scholar]
  29. Klijn A., Mercenier A., Arigoni F. ( 2005). Lessons from the genomes of bifidobacteria. FEMS Microbiol Rev 29:491–509 [View Article][PubMed]
    [Google Scholar]
  30. Le Fourn C., Fardeau M. L., Ollivier B., Lojou E., Dolla A. ( 2008). The hyperthermophilic anaerobe Thermotoga Maritima is able to cope with limited amount of oxygen: insights into its defence strategies. Environ Microbiol 10:1877–1887 [View Article][PubMed]
    [Google Scholar]
  31. Leichert L. I., Jakob U. ( 2004). Protein thiol modifications visualized in vivo. PLoS Biol 2:e333 [View Article][PubMed]
    [Google Scholar]
  32. Leong L. M., Tan B. H., Ho K. K. ( 1992). A specific stain for the detection of nonheme iron proteins in polyacrylamide gels. Anal Biochem 207:317–320 [View Article][PubMed]
    [Google Scholar]
  33. Lobo S. A., Melo A. M., Carita J. N., Teixeira M., Saraiva L. M. ( 2007). The anaerobe Desulfovibrio desulfuricans ATCC 27774 grows at nearly atmospheric oxygen levels. FEBS Lett 581:433–436 [View Article][PubMed]
    [Google Scholar]
  34. López-Gomollón S., Sevilla E., Bes M. T., Peleato M. L., Fillat M. F. ( 2009). New insights into the role of Fur proteins: FurB (All2473) from Anabaena protects DNA and increases cell survival under oxidative stress. Biochem J 418:201–207 [View Article][PubMed]
    [Google Scholar]
  35. Lu L. D., Sun Q., Fan X. Y., Zhong Y., Yao Y. F., Zhao G. P. ( 2010). Mycobacterial MazG is a novel NTP pyrophosphohydrolase involved in oxidative stress response. J Biol Chem 285:28076–28085 [View Article][PubMed]
    [Google Scholar]
  36. Maki H., Sekiguchi M. ( 1992). MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature 355:273–275 [View Article][PubMed]
    [Google Scholar]
  37. Masco L., Huys G., De Brandt E., Temmerman R., Swings J. ( 2005). Culture-dependent and culture-independent qualitative analysis of probiotic products claimed to contain bifidobacteria. Int J Food Microbiol 102:221–230 [View Article][PubMed]
    [Google Scholar]
  38. Masco L., Van Hoorde K., De Brandt E., Swings J., Huys G. ( 2006). Antimicrobial susceptibility of Bifidobacterium strains from humans, animals and probiotic products. J Antimicrob Chemother 58:85–94 [View Article][PubMed]
    [Google Scholar]
  39. Miyoshi A., Rochat T., Gratadoux J. J., Le Loir Y., Oliveira S. C., Langella P., Azevedo V. ( 2003). Oxidative stress in Lactococcus lactis . Genet Mol Res 2:348–359[PubMed]
    [Google Scholar]
  40. Monje-Casas F., Jurado J., Prieto-Alamo M. J., Holmgren A., Pueyo C. ( 2001). Expression analysis of the nrdHIEF operon from Escherichia coli. Conditions that trigger the transcript level in vivo. J Biol Chem 276:18031–18037 [View Article][PubMed]
    [Google Scholar]
  41. Mukhopadhyay A., Redding A. M., Joachimiak M. P., Arkin A. P., Borglin S. E., Dehal P. S., Chakraborty R., Geller J. T., Hazen T. C. et al. ( 2007). Cell-wide responses to low-oxygen exposure in Desulfovibrio vulgaris Hildenborough. J Bacteriol 189:5996–6010 [View Article][PubMed]
    [Google Scholar]
  42. Nair S., Finkel S. E. ( 2004). Dps protects cells against multiple stresses during stationary phase. J Bacteriol 186:4192–4198 [View Article][PubMed]
    [Google Scholar]
  43. Nakajima H., Amano W., Fujita A., Fukuhara A., Azuma Y. T., Hata F., Inui T., Takeuchi T. ( 2007). The active site cysteine of the proapoptotic protein glyceraldehyde-3-phosphate dehydrogenase is essential in oxidative stress-induced aggregation and cell death. J Biol Chem 282:26562–26574 [View Article][PubMed]
    [Google Scholar]
  44. Nordlund P., Reichard P. ( 2006). Ribonucleotide reductases. Annu Rev Biochem 75:681–706 [View Article][PubMed]
    [Google Scholar]
  45. Rocha E. R., Smith C. J. ( 1999). Role of the alkyl hydroperoxide reductase (ahpCF) gene in oxidative stress defense of the obligate anaerobe Bacteroides fragilis . J Bacteriol 181:5701–5710[PubMed]
    [Google Scholar]
  46. Ruiz L., Couté Y., Sánchez B., de los Reyes-Gavilán C. G., Sanchez J. C., Margolles A. ( 2009). The cell-envelope proteome of Bifidobacterium longum in an in vitro bile environment. Microbiology 155:957–967 [View Article][PubMed]
    [Google Scholar]
  47. Sakai A., Cox M. M. ( 2009). RecFOR and RecOR as distinct RecA loading pathways. J Biol Chem 284:3264–3272 [View Article][PubMed]
    [Google Scholar]
  48. Sánchez B., Noriega L., Ruas-Madiedo P., de los Reyes-Gavilán C. G., Margolles A. ( 2004). Acquired resistance to bile increases fructose-6-phosphate phosphoketolase activity in Bifidobacterium . FEMS Microbiol Lett 235:35–41 [View Article][PubMed]
    [Google Scholar]
  49. Sánchez B., Champomier-Vergès M. C., Anglade P., Baraige F., de Los Reyes-Gavilán C. G., Margolles A., Zagorec M. ( 2005). Proteomic analysis of global changes in protein expression during bile salt exposure of Bifidobacterium longum NCIMB 8809. J Bacteriol 187:5799–5808 [View Article][PubMed]
    [Google Scholar]
  50. Sánchez B., Champomier-Vergès M. C., Collado M. C., Anglade P., Baraige F., Sanz Y., de los Reyes-Gavilán C. G., Margolles A., Zagorec M. ( 2007). Low-pH adaptation and the acid tolerance response of Bifidobacterium longum biotype longum . Appl Environ Microbiol 73:6450–6459 [View Article][PubMed]
    [Google Scholar]
  51. Saumaa S., Tover A., Tark M., Tegova R., Kivisaar M. ( 2007). Oxidative DNA damage defense systems in avoidance of stationary-phase mutagenesis in Pseudomonas putida . J Bacteriol 189:5504–5514 [View Article][PubMed]
    [Google Scholar]
  52. Schell M. A., Karmirantzou M., Snel B., Vilanova D., Berger B., Pessi G., Zwahlen M. C., Desiere F., Bork P. et al. ( 2002). The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci U S A 99:14422–14427 [View Article][PubMed]
    [Google Scholar]
  53. Sekiguchi M. ( 1996). MutT-related error avoidance mechanism for DNA synthesis. Genes Cells 1:139–145 [View Article][PubMed]
    [Google Scholar]
  54. Shah N. P. ( 2000). Probiotic bacteria: selective enumeration and survival in dairy foods. J Dairy Sci 83:894–907 [View Article][PubMed]
    [Google Scholar]
  55. Shimamura S., Abe F., Ishibashi N., Miyakawa H., Yaeshima T., Araya T., Tomita M. ( 1992). Relationship between oxygen sensitivity and oxygen metabolism of Bifidobacterium species. J Dairy Sci 75:3296–3306 [View Article][PubMed]
    [Google Scholar]
  56. Talwalkar A., Kailasapathy K. ( 2003). Metabolic and biochemical responses of probiotic bacteria to oxygen. J Dairy Sci 86:2537–2546 [View Article][PubMed]
    [Google Scholar]
  57. Talwalkar A., Kailasapathy K. ( 2004). The role of oxygen in the viability of probiotic bacteria with reference to L. acidophilus and Bifidobacterium spp. Curr Issues Intest Microbiol 5:1–8[PubMed]
    [Google Scholar]
  58. Tanaka H., Hashiba H., Kok J., Mierau I. ( 2000). Bile salt hydrolase of Bifidobacterium longum – biochemical and genetic characterization. Appl Environ Microbiol 66:2502–2512 [View Article][PubMed]
    [Google Scholar]
  59. Trebichavsky I., Rada V., Splichalova A., Splichal I. ( 2009). Cross-talk of human gut with bifidobacteria. Nutr Rev 67:77–82 [View Article][PubMed]
    [Google Scholar]
  60. Wolf C., Hochgräfe F., Kusch H., Albrecht D., Hecker M., Engelmann S. ( 2008). Proteomic analysis of antioxidant strategies of Staphylococcus aureus: diverse responses to different oxidants. Proteomics 8:3139–3153 [View Article][PubMed]
    [Google Scholar]
  61. Wu J., Jiang Z., Liu M., Gong X., Wu S., Burns C. M., Li Z. ( 2009). Polynucleotide phosphorylase protects Escherichia coli against oxidative stress. Biochemistry 48:2012–2020 [View Article][PubMed]
    [Google Scholar]
  62. Yang H., Liu A., Zhang M., Ibrahim S. A., Pang Z., Leng X., Ren F. ( 2009a). Oral administration of live Bifidobacterium substrains isolated from centenarians enhances intestinal function in mice. Curr Microbiol 59:439–445 [View Article][PubMed]
    [Google Scholar]
  63. Yang H. Y., Liu S. L., Ibrahim S. A., Zhao L., Jiang J. L., Sun W. F., Ren F. Z. ( 2009b). Oral administration of live Bifidobacterium substrains isolated from healthy centenarians enhanced immune function in BALB/c mice. Nutr Res 29:281–289 [View Article][PubMed]
    [Google Scholar]
  64. Ye K., Serganov A., Hu W., Garber M., Patel D. J. ( 2002). Ribosome-associated factor Y adopts a fold resembling a double-stranded RNA binding domain scaffold. Eur J Biochem 269:5182–5191 [View Article][PubMed]
    [Google Scholar]
  65. Zhang J., Ma H., Feng J., Zeng L., Wang Z., Chen S. ( 2008). Grape berry plasma membrane proteome analysis and its differential expression during ripening. J Exp Bot 59:2979–2990 [View Article][PubMed]
    [Google Scholar]
  66. Zhang J., Ma H., Chen S., Ji M., Perl A., Kovacs L., Chen S. ( 2009). Stress response proteins’ differential expression in embryogenic and non-embryogenic callus of Vitis vinifera L. cv. Cabernet Sauvignon – a proteomic approach. Plant Sci 177:103–113 [View Article]
    [Google Scholar]
  67. Zhao G., Ceci P., Ilari A., Giangiacomo L., Laue T. M., Chiancone E., Chasteen N. D. ( 2002). Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. A ferritin-like DNA-binding protein of Escherichia coli . J Biol Chem 277:27689–27696 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.044297-0
Loading
/content/journal/micro/10.1099/mic.0.044297-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error