1887

Abstract

Hadal trenches are the deepest but underexplored ecosystems on the Earth. Inhabiting the trench bottom is a group of micro-organisms termed obligate piezophiles that grow exclusively under high hydrostatic pressures (HHP). To reveal the genetic and physiological characteristics of their peculiar lifestyles and microbial adaptation to extreme high pressures, we sequenced the complete genome of the obligately piezophilic bacterium DB21MT-5 isolated from the deepest oceanic sediment at the Challenger Deep, Mariana Trench. Through comparative analysis against pressure sensitive and deep-sea piezophilic strains, we identified over a hundred genes that present exclusively in hadal strain DB21MT-5. The hadal strain encodes fewer signal transduction proteins and secreted polysaccharases, but has more abundant metal ion transporters and the potential to utilize plant-derived saccharides. Instead of producing osmolyte betaine from choline as other strains, strain DB21MT-5 ferments on choline within a dedicated bacterial microcompartment organelle. Furthermore, the defence systems possessed by DB21MT-5 are distinct from other strains but resemble those in obligate piezophiles obtained from the same geographical setting. Collectively, the intensive comparative genomic analysis of an obligately piezophilic strain DB21MT-5 demonstrates a depth-dependent distribution of energy metabolic pathways, compartmentalization of important metabolism and use of distinct defence systems, which likely contribute to microbial adaptation to the bottom of hadal trench.

Funding
This study was supported by the:
  • Sanya City (Award 2018YD01)
    • Principle Award Recipient: Wei-jiaZhang
  • Key Research and Development Project of Hainan Province (Award ZDKJ2019011)
    • Principle Award Recipient: Wei-jiaZhang
  • Key Technologies Research and Development Program (Award 2016YFC0304905-08)
    • Principle Award Recipient: Wei-jiaZhang
  • National Natural Science Foundation of China (Award NSFC 42076127, 91751108, 91751202 and 41506147)
    • Principle Award Recipient: Wei-jiaZhang
  • Strategic Priority Research Program of the Chinese Academy of Sciences (Award XDA19060403)
    • Principle Award Recipient: Wei-jiaZhang
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000591
2021-07-28
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/7/mgen000591.html?itemId=/content/journal/mgen/10.1099/mgen.0.000591&mimeType=html&fmt=ahah

References

  1. Taira K, Yanagimoto D, Kitagawa S. Deep CTD casts in the Challenger Deep. J Oceanogr 2005; 61:447–454 [View Article]
    [Google Scholar]
  2. Nunoura T, Takaki Y, Hirai M, Shimamura S, Makabe A. Hadal biosphere: Insight into the microbial ecosystem in the deepest ocean on Earth. Proc Natl Acad Sci U S A 2015; 112:E1230–E1236 [View Article] [PubMed]
    [Google Scholar]
  3. Xu Y, Ge H, Fang J. Biogeochemistry of hadal trenches: Recent developments and future perspectives. Deep Sea Research Part II: Topical Studies in Oceanography 2018; 155:19 [View Article]
    [Google Scholar]
  4. Hiraoka S, Hirai M, Matsui Y, Makabe A, Minegishi H. Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments. ISME J 2020; 14:740–756 [View Article] [PubMed]
    [Google Scholar]
  5. Balny C, Masson P, Heremans K. High pressure effects on biological macromolecules: from structural changes to alteration of cellular processes. Biochim Biophys Acta 2002; 1595:3–10 [View Article] [PubMed]
    [Google Scholar]
  6. Garel M, Bonin P, Martini S, Guasco S, Roumagnac M et al. Pressure-retaining sampler and high-pressure systems to study deep-sea microbes under in situ conditions. Front Microbiol 2019; 10:453 [View Article] [PubMed]
    [Google Scholar]
  7. Li L, Kato C, Nogi Y, Horikoshi K. Distribution of the pressure-regulated operons in deep-sea bacteria. FEMS Microbiol Lett 1998; 159:159–166 [View Article] [PubMed]
    [Google Scholar]
  8. Yamada M, Nakasone K, Tamegai H, Kato C, Usami R. Pressure regulation of soluble cytochromes c in a deep-sea piezophilic bacterium, Shewanella violacea. J Bacteriol 2000; 182:2945–2952 [View Article] [PubMed]
    [Google Scholar]
  9. Abe F, Iida H. Pressure-induced differential regulation of the two tryptophan permeases Tat1 and Tat2 by ubiquitin ligase Rsp5 and its binding proteins, Bul1 and Bul2. Mol Cell Biol 2003; 23:7566–7584 [View Article] [PubMed]
    [Google Scholar]
  10. Allen EE, Facciotti D, Bartlett DH. Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperature. Appl Environ Microbiol 1999; 65:1710–1720 [View Article] [PubMed]
    [Google Scholar]
  11. Allen EE, Bartlett DH. Structure and regulation of the omega-3 polyunsaturated fatty acid synthase genes from the deep-sea bacterium Photobacterium profundum strain SS9. Microbiology (Reading) 2002; 148:1903–1913 [View Article] [PubMed]
    [Google Scholar]
  12. Wang F, Xiao X, HY O, Gai Y, Wang F. Role and regulation of fatty acid biosynthesis in the response of Shewanella piezotolerans WP3 to different temperatures and pressures. J Bacteriol 2009; 191:2574–2584 [View Article]
    [Google Scholar]
  13. Qin QL, Li Y, Zhang YJ, Zhou ZM, Zhang WX. Comparative genomics reveals a deep-sea sediment-adapted life style of Pseudoalteromonas sp. ISME J 2011; 5:274–284 [View Article] [PubMed]
    [Google Scholar]
  14. Chastain RA, Yayanos AA. Ultrastructural changes in an obligately barophilic marine bacterium after decompression. Appl Environ Microbiol 1991; 57:1489–1497 [View Article] [PubMed]
    [Google Scholar]
  15. Birrien JL, Zeng X, Jebbar M, Cambon-Bonavita MA, Querellou J. Pyrococcus yayanosii sp. nov., an obligate piezophilic hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 2011; 61:2827–2881 [View Article] [PubMed]
    [Google Scholar]
  16. Fang J, Zhang L, Bazylinski DA. Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends Microbiol 2010; 18:413–422 [View Article] [PubMed]
    [Google Scholar]
  17. Kusube M, Kyaw TS, Tanikawa K, Chastain RA, Hardy KM. Colwellia marinimaniae sp. nov., a hyperpiezophilic species isolated from an amphipod within the Challenger Deep. Int J Syst Evol Microbiol 2017; 67:824–831 [View Article] [PubMed]
    [Google Scholar]
  18. Liu R, Wang L, Wei Y, Fang J. The hadal biosphere: Recent insights and new directions. In Deep Sea Research Part II: Topical Studies in Oceanography Vol 155September 2018 2018 pp 11–18 [View Article]
    [Google Scholar]
  19. Yayanos AA, Dietz AS, Van Boxtel R. Obligately barophilic bacterium from the Mariana trench. Proc Natl Acad Sci U S A 1981; 78:5212–5215 [View Article] [PubMed]
    [Google Scholar]
  20. Nogi Y, Hosoya S, Kato C, Horikoshi K. Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. Int J Syst Evol Microbiol 2004; 54:1627–1631 [View Article] [PubMed]
    [Google Scholar]
  21. Kato C, Li L, Nogi Y, Nakamura Y, Tamaoka J. Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl Environ Microbiol 1998; 64:1510–1513 [View Article] [PubMed]
    [Google Scholar]
  22. Lauro FM, Chastain RA, Blankenship LE, Yayanos AA, Bartlett DH. The unique 16S rRNA genes of piezophiles reflect both phylogeny and adaptation. Appl Environ Microbiol 2007; 73:838–845 [View Article] [PubMed]
    [Google Scholar]
  23. Nogi Y, Kato C, Horikoshi K. Psychromonas kaikoae sp. nov., a novel from the deepest piezophilic bacterium cold-seep sediments in the Japan Trench. Int J Syst Evol Microbiol 2002; 52:1527–1532 [View Article] [PubMed]
    [Google Scholar]
  24. Nogi Y, Hosoya S, Kato C, Horikoshi K. Psychromonas hadalis sp. nov., a novel piezophilic bacterium isolated from the bottom of the Japan Trench. Int J Syst Evol Microbiol 2007; 57:1360–1364 [View Article] [PubMed]
    [Google Scholar]
  25. Zhang X, Xu W, Liu Y, Cai M, Luo Z et al. Metagenomics reveals microbial diversity and metabolic potentials of seawater and surface sediment from a hadal biosphere at the Yap Trench. Front Microbiol 2018; 9:2402 [View Article] [PubMed]
    [Google Scholar]
  26. Peoples LM, Kyaw TS, Ugalde JA, Mullane KK, Chastain RA. Distinctive gene and protein characteristics of extremely piezophilic Colwellia . BMC Genomics 2020; 21:692 [View Article] [PubMed]
    [Google Scholar]
  27. Tang X, Yu L, Yi Y, Wang J, Wang S. Phylogenomic analysis reveals a two-stage process of the evolutionary transition of Shewanella from the upper ocean to the hadal zone. Environ Microbiol 2020; 23:744–756 [View Article] [PubMed]
    [Google Scholar]
  28. Eloe EA, Fadrosh DW, Novotny M, Zeigler Allen L, Kim M et al. Going deeper: Metagenome of a hadopelagic microbial community. PLoS One 2011; 6:e20388 [View Article] [PubMed]
    [Google Scholar]
  29. Peoples LM, Grammatopoulou E, Pombrol M, Xu X, Osuntokun O et al. Microbial community diversity within sediments from two geographically separated hadal trenches. Front Microbiol 2019; 10:347 [View Article] [PubMed]
    [Google Scholar]
  30. Yanagibayashi M, Nogi Y, Li L, Kato C. Changes in the microbial community in Japan Trench sediment from a depth of 6292 m during cultivation without decompression. FEMS Microbiol Lett 1999; 170:271–279 [View Article] [PubMed]
    [Google Scholar]
  31. Benediktsdottir E, Verdonck L, Sproer C, Helgason S, Swings J. Characterization of Vibrio viscosus and Vibrio wodanis isolated at different geographical locations: a proposal for reclassification of Vibrio viscosus as Moritella viscosa comb. nov. Int J Syst Evol Microbiol 2000; 50:479–488 [View Article]
    [Google Scholar]
  32. Kim HJ, Park S, Lee JM, Park S, Jung W. Moritella dasanensis sp. nov., a psychrophilic bacterium isolated from the Arctic ocean. Int J Syst Evol Microbiol 2008; 58:817–820 [View Article] [PubMed]
    [Google Scholar]
  33. Urakawa H, Kita-Tsukamoto K, Steven SE, Ohwada K, Colwell RR. A proposal to transfer Vibrio marinus (Russell 1891) to a new genus Moritella gen. nov. as Moritella marina comb. nov. FEMS Microbiol Lett 1998; 165:373–378 [View Article] [PubMed]
    [Google Scholar]
  34. Xu Y, Nogi Y, Kato C, Liang Z, Ruger HJ. Moritella profunda sp. nov. and Moritella abyssi sp. nov., two psychropiezophilic organisms isolated from deep Atlantic sediments. Int J Syst Evol Microbiol 2003; 53:533–538 [View Article] [PubMed]
    [Google Scholar]
  35. Nogi Y, Kato C, Horikoshi K. Moritella japonica sp. nov., a novel barophilic bacterium isolated from a Japan Trench sediment. J Gen Appl Microbiol 1998; 44:289–295 [View Article] [PubMed]
    [Google Scholar]
  36. Freitas RC, Odisi EJ, Kato C, da Silva MAC, Lima AOS. Draft genome sequence of the deep-sea bacterium Moritella sp. JT01 and identification of biotechnologically relevant genes. Mar Biotechnol 2017; 19:480–487 [View Article] [PubMed]
    [Google Scholar]
  37. DeLong EF, Franks DG, Yayanos AA. Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Environ Microb 1997; 63:2105–2108 [View Article]
    [Google Scholar]
  38. Vallenet D, Calteau A, Dubois M, Amours P, Bazin A. MicroScope: an integrated platform for the annotation and exploration of microbial gene functions through genomic, pangenomic and metabolic comparative analysis. Nucleic Acids Res 2019; 48:D579–D589 [View Article] [PubMed]
    [Google Scholar]
  39. UniProt C. The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Res 2010; 38:D142–148 [View Article]
    [Google Scholar]
  40. Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science 1997; 278:631–637 [View Article] [PubMed]
    [Google Scholar]
  41. Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A. InterPro: the integrative protein signature database. Nucleic Acids Res 2009; 37:D211–215 [View Article] [PubMed]
    [Google Scholar]
  42. Gardy JL, Laird MR, Chen F, Rey S, Walsh CJ. PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 2005; 21:617–623 [View Article] [PubMed]
    [Google Scholar]
  43. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011; 8:785–786 [View Article] [PubMed]
    [Google Scholar]
  44. Kahsay RY, Gao G, Liao L. An improved hidden Markov model for transmembrane protein detection and topology prediction and its applications to complete genomes. Bioinformatics 2005; 21:1853–1858 [View Article] [PubMed]
    [Google Scholar]
  45. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article] [PubMed]
    [Google Scholar]
  46. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 2019 [View Article] [PubMed]
    [Google Scholar]
  47. Jain C, Rodriguez RL, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article]
    [Google Scholar]
  48. Stothard P, Wishart DS. Circular genome visualization and exploration using CGView. Bioinformatics 2005; 21:537–539 [View Article] [PubMed]
    [Google Scholar]
  49. Bertelli C, Laird MR, Williams KP. Simon Fraser University Research Computing Group Lau BY et al. Islandviewer 4: Expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 2017; 45:W30–W35 [View Article] [PubMed]
    [Google Scholar]
  50. Sekiguchi T, Sato T, Enoki M, Kanehiro H, Uematsu K et al. Isolation and characterization of biodegradable plastic degrading bacteria from deep-sea environments. JAMSTEC Report of Research and Development 2011 pp 33–41 [View Article]
    [Google Scholar]
  51. Yayanos AA. Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. Proc Natl Acad Sci USA 1986; 83:9542–9546 [View Article] [PubMed]
    [Google Scholar]
  52. Benediktsdottir E, Heidarsdottir KJ. Growth and lysis of the fish pathogen Moritella viscosa. Lett Appl Microbiol 2007; 45:115–120 [View Article] [PubMed]
    [Google Scholar]
  53. Jormakka M, Byrne B, Iwata S. Formate dehydrogenase--a versatile enzyme in changing environments. Curr Opin Struct Biol 2003; 13:418–423 [View Article] [PubMed]
    [Google Scholar]
  54. Hagerhall C, Hederstedt L. A structural model for the membrane-integral domain of succinate: quinone oxidoreductases. FEBS Lett 1996; 389:25–31 [View Article] [PubMed]
    [Google Scholar]
  55. Hagerhall C. Succinate: quinone oxidoreductases. Variations on a conserved theme. Biochim Biophys Acta 1997; 1320:107–141 [View Article] [PubMed]
    [Google Scholar]
  56. Abe F, Kato C, Horikoshi K. Pressure-regulated metabolism in microorganisms. Trends Microbiol 1999; 7:447–453 [View Article] [PubMed]
    [Google Scholar]
  57. Li X-G, Zhang W-J, Xiao X, Jian H-H, Jiang T. Pressure-regulated gene expression and enzymatic activity of the two periplasmic nitrate reductases in the deep-sea bacterium Shewanella piezotolerans WP3. Front Microbiol 2018; 9:3173 [View Article]
    [Google Scholar]
  58. Yin Q-J, Zhang W-J, Qi X-Q, Zhang S-D, Jiang T. High hydrostatic pressure inducible trimethylamine n-oxide reductase improves the pressure tolerance of piezosensitive bacteria Vibrio fluvialis . Front Microbiol 2018; 8: [View Article]
    [Google Scholar]
  59. Kato C, Qureshi MH. Pressure response in deep-sea piezophilic bacteria. J Mol Microbiol Biotechnol 1999; 1:87–92 [PubMed]
    [Google Scholar]
  60. Zhang W-J, Cui X-H, Chen L-H, Yang J, Li X-G et al. Complete genome sequence of Shewanella benthica db21mt-2, an obligate piezophilic bacterium isolated from the deepest Mariana Trench sediment. Marine Genomics 2019; 44:52–56 [View Article]
    [Google Scholar]
  61. Kerfeld CA, Aussignargues C, Zarzycki J, Cai F, Sutter M. Bacterial microcompartments. Nat Rev Microbiol 2018; 16:277–290 [View Article] [PubMed]
    [Google Scholar]
  62. Craciun S, Balskus EP. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc Natl Acad Sci USA 2012; 109:21307–21312 [View Article] [PubMed]
    [Google Scholar]
  63. Yancey PH, Rhea MD, Kemp KM, Bailey DM. Trimethylamine oxide, betaine and other osmolytes in deep-sea animals: depth trends and effects on enzymes under hydrostatic pressure. Cell Mol Biol (Noisy-le-grand) 2004; 50:371–376 [PubMed]
    [Google Scholar]
  64. Zou H, Chen N, Shi M, Xian M, Song Y. The metabolism and biotechnological application of betaine in microorganism. Appl Microbiol Biotechnol 2016; 100:3865–3876 [View Article] [PubMed]
    [Google Scholar]
  65. Herring TI, Harris TN, Chowdhury C, Mohanty SK, Bobik TA. A bacterial microcompartment is used for choline fermentation by Escherichia coli 536. J Bacteriol 2018; 200:10 [View Article] [PubMed]
    [Google Scholar]
  66. Martinez-del Campo A, Bodea S, Hamer HA, Marks JA, Haiser HJ. Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria. mBio 2015; 6: [View Article] [PubMed]
    [Google Scholar]
  67. Jamieson AJ, Fujii T, Mayor DJ, Solan M, Priede IG. Hadal trenches: the ecology of the deepest places on Earth. Trends in Ecology & Evolution 2010; 25:190–197 [View Article]
    [Google Scholar]
  68. Li M, Baker BJ, Anantharaman K, Jain S, Breier JA. Genomic and transcriptomic evidence for scavenging of diverse organic compounds by widespread deep-sea archaea. Nat Commun 2015; 6:8933 [View Article] [PubMed]
    [Google Scholar]
  69. Tarn J, Peoples LM, Hardy K, Cameron J, Bartlett DH. Identification of free-living and particle-associated microbial communities present in hadal regions of the Mariana Trench. Front Microbiol 2016; 7:665 [View Article] [PubMed]
    [Google Scholar]
  70. Mi ZH, Yu ZC, HN S, Wang L, Chen XL. Physiological and genetic analyses reveal a mechanistic insight into the multifaceted lifestyles of Pseudoalteromonas sp. SM9913 adapted to the deep-sea sediment. Environ Microbiol 2015; 17:3795–3806 [View Article]
    [Google Scholar]
  71. Leyn SA, Gao F, Yang C, Rodionov DA. N-acetylgalactosamine utilization pathway and regulon in proteobacteria: genomic reconstruction and experimental characterization in Shewanella. J Biol Chem 2012; 287:28047–28056 [View Article] [PubMed]
    [Google Scholar]
  72. Raghavan V, Lowe EC, Townsend GE, Bolam DN, Groisman EA. Tuning transcription of nutrient utilization genes to catabolic rate promotes growth in a gut bacterium. Mol Microbiol 2014; 93:1010–1025 [View Article] [PubMed]
    [Google Scholar]
  73. Hobbs JK, Hettle AG, Vickers C, Boraston AB. Biochemical reconstruction of a metabolic pathway from a marine bacterium reveals its mechanism of pectin depolymerization. Appl Environ Microbiol 2019; 85: [View Article] [PubMed]
    [Google Scholar]
  74. Hugouvieux-Cotte-Pattat N, Nasser W, Robert-Baudouy J. Molecular characterization of the Erwinia chrysanthemi kdgK gene involved in pectin degradation. J Bacteriol 1994; 176:2386–2392 [View Article] [PubMed]
    [Google Scholar]
  75. Colvin KM, Gordon VD, Murakami K, Borlee BR, Wozniak DJ et al. The Pel polysaccharide can serve a structural and protective role in the biofilm matrix of pseudomonas aeruginosa. PLoS Pathog 2011; 7:e1001264 [View Article] [PubMed]
    [Google Scholar]
  76. Jennings LK, Storek KM, Ledvina HE, Coulon C, Marmont LS. Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix. Proc Natl Acad Sci U S A 2015; 112:11353–11358 [View Article] [PubMed]
    [Google Scholar]
  77. Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol 2010; 8:623–633 [View Article] [PubMed]
    [Google Scholar]
  78. Kobayashi H, Hatada Y, Tsubouchi T, Nagahama T, Takami H. The hadal amphipod hirondellea gigas possessing a unique cellulase for digesting wooden debris buried in the deepest seafloor. PloS One 2012; 7:e42727 [View Article] [PubMed]
    [Google Scholar]
  79. Liu J, Xue CX, Sun H, Zheng Y, Meng Z. Carbohydrate catabolic capability of a Flavobacteriia bacterium isolated from hadal water. Syst Appl Microbiol 2019; 42:263–274 [View Article] [PubMed]
    [Google Scholar]
  80. Koonin EV, Makarova KS, Wolf YI. Evolutionary genomics of defense systems in Archaea and Bacteria . Annu Rev Microbiol 2017; 71:233–261 [View Article] [PubMed]
    [Google Scholar]
  81. Goldberg GW, Marraffini LA. Resistance and tolerance to foreign elements by prokaryotic immune systems - curating the genome. Nat Rev Immunol 2015; 15:717–724 [View Article] [PubMed]
    [Google Scholar]
  82. Manea E, Dell’Anno A, Rastelli E, Tangherlini M, Nunoura T. Viral infections boost prokaryotic biomass production and organic c cycling in hadal trench sediments. Front Microbiol 2019; 10:1952 [View Article] [PubMed]
    [Google Scholar]
  83. Murray NE. Type I restriction systems: Sophisticated molecular machines (a legacy of Bertani and Weigle. Microbiol Mol Biol R 2000; 64:412 [View Article]
    [Google Scholar]
  84. Goldfarb T, Sberro H, Weinstock E, Cohen O, Doron S. BREX is a novel phage resistance system widespread in microbial genomes. EMBO J 2015; 34:169–183 [View Article] [PubMed]
    [Google Scholar]
  85. Harms A, Brodersen DE, Mitarai N, Gerdes K. Toxins, targets, and triggers: An overview of toxin-antitoxin biology. Mol Cell 2018; 70:768–784 [View Article] [PubMed]
    [Google Scholar]
  86. Ahmed E, Holmstrom SJM. Siderophores in environmental research: roles and applications. Microb Biotechnol 2014; 7:196–208 [View Article] [PubMed]
    [Google Scholar]
  87. Krewulak KD, Vogel HJ. TonB or not TonB: is that the question? This paper is one of a selection of papers published in a special issue entitled CSBMCB 53rd Annual Meeting — Membrane Proteins in Health and Disease, and has undergone the Journal’s usual peer review process. Biochem Cell Biol 2011; 89:87–97 [View Article]
    [Google Scholar]
  88. Lau CKY, Krewulak KD, Vogel HJ. Bacterial ferrous iron transport: the Feo system. Fems Microbiol Rev 2016; 40:273–298 [View Article]
    [Google Scholar]
  89. Burnett WC. Trace-element geochemistry of biogenic sediments from Western Equatorial Pacific. Pac Sci 1975; 29:219–225
    [Google Scholar]
  90. Yang J, Cui Z, Dada OA, Yang Y, Yu H. Distribution and enrichment of trace metals in surface marine sediments collected by the manned submersible Jiaolong in the Yap Trench, northwest Pacific Ocean. Mar Pollut Bull 2018; 135:1035–1041 [View Article] [PubMed]
    [Google Scholar]
  91. Brown A, Thatje S, Hauton C. The effects of temperature and hydrostatic pressure on metal toxicity: insights into toxicity in the deep sea. Environ Sci Technol 2017; 51:10222–10231 [View Article] [PubMed]
    [Google Scholar]
  92. Salah Ud-Din AIM, Roujeinikova A. Methyl-accepting chemotaxis proteins: a core sensing element in prokaryotes and archaea. Cell Mol Life Sci 2017; 74:3293–3303 [View Article] [PubMed]
    [Google Scholar]
  93. Huang Z, Pan X, Xu N, Guo M. Bacterial chemotaxis coupling protein: Structure, function and diversity. Microbiol Res 2019; 219:40–48 [View Article] [PubMed]
    [Google Scholar]
  94. Ashby MK. Survey of the number of two-component response regulator genes in the complete and annotated genome sequences of prokaryotes. FEMS Microbiol Lett 2004; 231:277–281 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000591
Loading
/content/journal/mgen/10.1099/mgen.0.000591
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error