1887

Abstract

There is an increasing concern about due to its high isolation frequency in candidiasis recently and notorious drug resistance to fluconazole. Drug combination is one effective approach to counteract drug resistance. This study aimed to test whether a combination of fluconazole and tacrolimus (FK506) had a synergistic effect on , and to seek the potential mechanisms underlying the synergistic effects. effects of fluconazole and FK506 against with different susceptibilities were investigated by a chequerboard method and a time–kill curve method. The mechanistic studies against the resistant were performed from two aspects: quantification of expression levels of fluconazole resistance genes (, , and ) by real-time quantitative PCR and functional assays of drug efflux pumps. The addition of FK506 resulted in a decrease in the MIC of fluconazole from 32 to 8 µg ml against the dose-dependent susceptible , and from 256 to 16 µg ml against the resistant , respectively. The synergy was further confirmed by the time-kill assay. The expression levels of the and genes were significantly downregulated after exposure to the drug combination, whereas that of the gene was significantly upregulated, and no significant change in expression of gene was observed. Flow cytometric assays showed that FK506 reduced the efflux of fluconazole. Tacrolimus enhanced the susceptibility of fluconazole against resistant by reducing the expression levels of the and genes and inhibiting fluconazole efflux.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.081760-0
2015-01-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/1/44.html?itemId=/content/journal/jmm/10.1099/jmm.0.081760-0&mimeType=html&fmt=ahah

References

  1. Abbes S., Mary C., Sellami H., Michel-Nguyen A., Ayadi A., Ranque S. 2013; Interactions between copy number and expression level of genes involved in fluconazole resistance in Candida glabrata. Front Cell Infect Microbiol 3:74 [View Article][PubMed]
    [Google Scholar]
  2. Albertson G. D., Niimi M., Cannon R. D., Jenkinson H. F. 1996; Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimicrob Agents Chemother 40:2835–2841[PubMed]
    [Google Scholar]
  3. Chen K. H., Miyazaki T., Tsai H. F., Bennett J. E. 2007; The bZip transcription factor Cgap1p is involved in multidrug resistance and required for activation of multidrug transporter gene CgFLR1 in Candida glabrata. Gene 386:63–72 [View Article][PubMed]
    [Google Scholar]
  4. CLSI 2008; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; 3rd edn. Approved Standard, M27–A3. Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  5. Costa C., Pires C., Cabrito T. R., Renaudin A., Ohno M., Chibana H., Sá-Correia I., Teixeira M. C. 2013; Candida glabrata drug:H+ antiporter CgQdr2 confers imidazole drug resistance, being activated by transcription factor CgPdr1. Antimicrob Agents Chemother 57:3159–3167 [View Article][PubMed]
    [Google Scholar]
  6. Cowen L. E. 2009; Hsp90 orchestrates stress response signaling governing fungal drug resistance. PLoS Pathog 5:e1000471 [View Article][PubMed]
    [Google Scholar]
  7. Cruz M. C., Goldstein A. L., Blankenship J. R., Del Poeta M., Davis D., Cardenas M. E., Perfect J. R., McCusker J. H., Heitman J. 2002; Calcineurin is essential for survival during membrane stress in Candida albicans. EMBO J 21:546–559 [View Article][PubMed]
    [Google Scholar]
  8. Edlind T., Smith L., Henry K., Katiyar S., Nickels J. 2002; Antifungal activity in Saccharomyces cerevisiae is modulated by calcium signalling. Mol Microbiol 46:257–268 [View Article][PubMed]
    [Google Scholar]
  9. Gao Y., Zhang C., Lu C., Liu P., Li Y., Li H., Sun S. 2013; Synergistic effect of doxycycline and fluconazole against Candida albicans biofilms and the impact of calcium channel blockers. FEMS Yeast Res 13:453–462 [View Article][PubMed]
    [Google Scholar]
  10. Holmes A. R., Keniya M. V., Ivnitski-Steele I., Monk B. C., Lamping E., Sklar L. A., Cannon R. D. 2012; The monoamine oxidase A inhibitor clorgyline is a broad-spectrum inhibitor of fungal ABC and MFS transporter efflux pump activities which reverses the azole resistance of Candida albicans and Candida glabrata clinical isolates. Antimicrob Agents Chemother 56:1508–1515 [View Article][PubMed]
    [Google Scholar]
  11. Jandric Z., Schüller C. 2011; Stress response in Candida glabrata: pieces of a fragmented picture. Future Microbiol 6:1475–1484 [View Article][PubMed]
    [Google Scholar]
  12. Katiyar S. K., Alastruey-Izquierdo A., Healey K. R., Johnson M. E., Perlin D. S., Edlind T. D. 2012; Fks1 and Fks2 are functionally redundant but differentially regulated in Candida glabrata: implications for echinocandin resistance. Antimicrob Agents Chemother 56:6304–6309 [View Article][PubMed]
    [Google Scholar]
  13. Kauffman C. A., Vazquez J. A., Sobel J. D., Gallis H. A., McKinsey D. S., Karchmer A. W., Sugar A. M., Sharkey P. K., Wise G. J.& other authors ( 2000; Prospective multicenter surveillance study of funguria in hospitalized patients. Clin Infect Dis 30:14–18 [View Article][PubMed]
    [Google Scholar]
  14. Kaur R., Castaño I., Cormack B. P. 2004; Functional genomic analysis of fluconazole susceptibility in the pathogenic yeast Candida glabrata: roles of calcium signaling and mitochondria. Antimicrob Agents Chemother 48:1600–1613 [View Article][PubMed]
    [Google Scholar]
  15. Lamping E., Monk B. C., Niimi K., Holmes A. R., Tsao S., Tanabe K., Niimi M., Uehara Y., Cannon R. D. 2007; Characterization of three classes of membrane proteins involved in fungal azole resistance by functional hyperexpression in Saccharomyces cerevisiae. Eukaryot Cell 6:1150–1165 [View Article][PubMed]
    [Google Scholar]
  16. Lewis J. S. II, Wiederhold N. P., Wickes B. L., Patterson T. F., Jorgensen J. H. 2013; Rapid emergence of echinocandin resistance in Candida glabrata resulting in clinical and microbiologic failure. Antimicrob Agents Chemother 57:4559–4561 [View Article][PubMed]
    [Google Scholar]
  17. Li Q. Q., Skinner J., Bennett J. E. 2012; Evaluation of reference genes for real-time quantitative PCR studies in Candida glabrata following azole treatment. BMC Mol Biol 13:22 [View Article][PubMed]
    [Google Scholar]
  18. Liu S., Hou Y., Chen X., Gao Y., Li H., Sun S. 2014; Combination of fluconazole with non-antifungal agents: a promising approach to cope with resistant Candida albicans infections and insight into new antifungal agent discovery. Int J Antimicrob Agents 43:395–402 [View Article][PubMed]
    [Google Scholar]
  19. Maesaki S., Marichal P., Vanden Bossche H., Sanglard D., Kohno S. 1999; Rhodamine 6G efflux for the detection of CDR1-overexpressing azole-resistant Candida albicans strains. J Antimicrob Chemother 44:27–31 [View Article][PubMed]
    [Google Scholar]
  20. Montejo M. 2011; [Epidemiology of invasive fungal infection in solid organ transplant]. Rev Iberoam Micol 28:120–123 (in Spanish) [View Article][PubMed]
    [Google Scholar]
  21. Moon C. J., Shin J. H., Kim D. W., Kee S. J., Kim S. H., Shin M. G., Suh S. P., Ryang D. W. 2009; [Species-specific differences in Rhodamine 6G accumulation of Candida isolates detected by flow cytometric analysis]. Korean J Lab Med 29:127–134 (in Korean) [View Article][PubMed]
    [Google Scholar]
  22. Odds F. C. 2003; Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 52:1 [View Article][PubMed]
    [Google Scholar]
  23. Onyewu C., Blankenship J. R., Del Poeta M., Heitman J. 2003; Ergosterol biosynthesis inhibitors become fungicidal when combined with calcineurin inhibitors against Candida albicans, Candida glabrata, and Candida krusei. Antimicrob Agents Chemother 47:956–964 [View Article][PubMed]
    [Google Scholar]
  24. Panizo M. M., Reviákina V., Dolande M., Selgrad S. 2009; Candida spp. in vitro susceptibility profile to four antifungal agents. Resistance surveillance study in Venezuelan strains. Med Mycol 47:137–143 [View Article][PubMed]
    [Google Scholar]
  25. Perea S., López-Ribot J. L., Kirkpatrick W. R., McAtee R. K., Santillán R. A., Martínez M., Calabrese D., Sanglard D., Patterson T. F. 2001; Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 45:2676–2684 [View Article][PubMed]
    [Google Scholar]
  26. Pfaffl M. W. 2001; A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45 [View Article][PubMed]
    [Google Scholar]
  27. Pfaller M. A., Diekema D. J. 2007; Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20:133–163 [View Article][PubMed]
    [Google Scholar]
  28. Pfaller M. A., Diekema D. J. 2012; Progress in antifungal susceptibility testing of Candida spp. by use of Clinical and Laboratory Standards Institute broth microdilution methods, 2010 to 2012. J Clin Microbiol 50:2846–2856 [View Article][PubMed]
    [Google Scholar]
  29. Pfaller M. A., Diekema D. J., Sheehan D. J. 2006; Interpretive breakpoints for fluconazole and Candida revisited: a blueprint for the future of antifungal susceptibility testing. Clin Microbiol Rev 19:435–447 [View Article][PubMed]
    [Google Scholar]
  30. Rodrigues C. F., Silva S., Henriques M. 2014; Candida glabrata: a review of its features and resistance. Eur J Clin Microbiol Infect Dis 33:673–688 [View Article][PubMed]
    [Google Scholar]
  31. Ruan S. Y., Hsueh P. R. 2009; Invasive candidiasis: an overview from Taiwan. J Formos Med Assoc 108:443–451 [View Article][PubMed]
    [Google Scholar]
  32. Sahuquillo Arce J. M., Colombo Gainza E., Gil Brusola A., Ortiz Estévez R., Cantón E., Gobernado M. 2006; In vitro activity of linezolid in combination with doxycycline, fosfomycin, levofloxacin, rifampicin and vancomycin against methicillin-susceptible Staphylococcus aureus. Rev Esp Quimioter 19:252–257[PubMed]
    [Google Scholar]
  33. Sanglard D., Ischer F., Bille J. 2001; Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata. Antimicrob Agents Chemother 45:1174–1183 [View Article][PubMed]
    [Google Scholar]
  34. Schmitt M. E., Brown T. A., Trumpower B. L. 1990; A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res 18:3091–3092 [View Article][PubMed]
    [Google Scholar]
  35. Shi W., Chen Z., Chen X., Cao L., Liu P., Sun S. 2010; The combination of minocycline and fluconazole causes synergistic growth inhibition against Candida albicans: an in vitro interaction of antifungal and antibacterial agents. FEMS Yeast Res 10:885–893 [View Article][PubMed]
    [Google Scholar]
  36. Sun S., Li Y., Guo Q., Shi C., Yu J., Ma L. 2008; In vitro interactions between tacrolimus and azoles against Candida albicans determined by different methods. Antimicrob Agents Chemother 52:409–417 [View Article][PubMed]
    [Google Scholar]
  37. Uppuluri P., Nett J., Heitman J., Andes D. 2008; Synergistic effect of calcineurin inhibitors and fluconazole against Candida albicans biofilms. Antimicrob Agents Chemother 52:1127–1132 [View Article][PubMed]
    [Google Scholar]
  38. West L., Lowman D. W., Mora-Montes H. M., Grubb S., Murdoch C., Thornhill M. H., Gow N. A., Williams D., Haynes K. 2013; Differential virulence of Candida glabrata glycosylation mutants. J Biol Chem 288:22006–22018 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.081760-0
Loading
/content/journal/jmm/10.1099/jmm.0.081760-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error